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Abstract

Duffee (2005) shows that the amount of consumption risk (i.e., the conditional covariance
between market returns and consumption growth) is procyclical. In light of this “Duf-
fee Puzzle,” I empirically demonstrate that the conditional covariance between dividend
growth (i.e., the immediate cash flow part of market returns) and consumption growth is
(1) procyclical and (2) a consistent source of procyclicality in the puzzle. Moreover, I solve
an external habit formation model that incorporates realistic joint dynamics of dividend
growth and consumption growth. The procyclical dividend-consumption comovement en-
tails two new procyclical terms in the amount of consumption risk via cash flow and valuation
channels, respectively. These two procyclical terms play an important role in generating a
realistic magnitude of consumption risk. In contrast to extant habit formation models, the
conditional equity premium no longer increases monotonically when a negative consump-
tion shock arrives because it might lower the amount of risk while increasing the price of risk.

JEL classification: C16, E21, G12
Keywords: Duffee Puzzle, procyclical amount of consumption risk, dividend-consumption
comovement, habit formation, equity premium

∗Boston College, Carroll School of Management, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467, USA;

nancy.xu@bc.edu. I would like to thank an anonymous referee and Geert Bekaert for their immense help. I have

also benefited from discussions with Ravi Bansal (discussant), Andrew Chen (discussant), Bob Hodrick, Mete

Kilic, Lars Lochstoer, Christian Lundblad (discussant), Michaela Pagel, Sung June Pyun (discussant), Carlos

Ramı́rez (discussant), Tano Santos, Asani Sarkars, Jessica Wachter and participants at the Columbia Business

School Third-Year Paper Presentation, the 2015 Transatlantic Doctoral Conference at London Business School,

the 2015 Australasian Banking and Finance Conference at UNSW (second-place prize winner), the 2017 AEA, the

Federal Reserve Bank of New York Seminar Series, the 2017 Annual SoFiE Conference, and the 2018 MFA. An

earlier version of the paper was titled “Procyclicality of the correlation between dividend growth and consumption

growth.” This paper was the second chapter of my Ph.D. thesis, “Essays on risk appetite and uncertainty.” The

Internet Appendix is available at https://www.nancyxu.net/research. All errors are my own.

mailto:nancy.xu@bc.edu
https://www.nancyxu.net/research


1 Introduction

Duffee (2005) shows that the amount of consumption risk (i.e., the conditional covariance

between market returns and consumption growth) is procyclical. This empirical finding is

surprising because it makes the countercyclical equity premium harder to explain. In fact, most

well-accepted consumption-based theories imply a countercyclical amount of consumption risk

(e.g., Campbell and Cochrane, 1999; Bansal and Yaron, 2004; and their recent variants). Hence,

I term this finding “the Duffee Puzzle.”

In this paper, I decompose the amount of consumption risk into an immediate cash flow

component and a valuation component, and find that the two components exhibit different

cyclical behaviors. In particular, the conditional covariance between the immediate cash flow

part of market returns (dividend growth) and consumption growth is procyclical and a con-

sistent source of procyclicality in the return-consumption covariance. Moreover, I propose a

parsimonious data generating process (DGP) for the joint dynamics of dividend growth and

consumption growth featuring procyclical dividend-consumption comovement, and explore how

realistic cash flow dynamics affect the performance of an external habit formation model.

In the empirical part of the paper, I use a dynamic conditional correlation framework to

identify the cyclicalities of the amount of consumption risk and its two components given the

cash flow-valuation return decomposition:

Covt
(
rmt+1,∆ct+1

)
= Covt (∆dt+1,∆ct+1)︸ ︷︷ ︸

Immediate Cash Flow

+Covt
(
rmt+1 −∆dt+1,∆ct+1

)︸ ︷︷ ︸
Valuation

, (1)

where rmt+1 is the log market return, ∆ct+1 is the log consumption growth, and ∆dt+1 is the log

dividend growth. First, I show that the total return-consumption covariance behaves weakly

procyclically, despite the strongly countercyclical market return volatility and consumption

growth volatility during my sample period, which adds 13 years of data to Duffee (2005) and

includes the 2007-2008 financial crisis. Importantly, there is a statistically strong and positive

relationship between the total return-consumption correlation and the state of the economy.

For example, market returns exhibit an average correlation of 0.16 with consumption growth

over the past 60 years, with the highest correlation (0.31) occurring during the expansion in

early 2000 and the lowest correlation (roughly 0) occurring during the 1960-1961 recession. As
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for the cyclicalities of the conditional covariance components, I show that the immediate cash

flow covariance behaves procyclically while the valuation covariance behaves countercyclically.

Given the cash flow-valuation return decomposition, the former covariance is the only source of

procyclicality in the amount of consumption risk, which sheds light on the Duffee Puzzle. This

represents my core empirical finding.

The empirical part of my paper concludes with a list of eight stylized facts pertinent

to my core empirical finding. These are new to the literature, except for the countercyclical

conditional variances of consumption growth and market returns:

(a) The conditional variance of ∆c is countercyclical.

(b) The conditional variance of ∆d is procyclical.

(c) The conditional correlation between ∆d and ∆c is procyclical.

(d) The conditional covariance between ∆d and ∆c is procyclical.

(e) The conditional sensitivity (beta) of ∆d to ∆c is procyclical.

(f) The conditional variance of rm −∆d is countercyclical.

(g) The conditional variance of rm is countercyclical.

(h) The conditional covariance between rm −∆d and ∆c is countercyclical.

In particular, the procyclicalities of all three dividend-consumption comovement measures —

correlation, covariance, and beta — are surprising findings because the asset pricing literature

mostly models dividend growth and consumption growth as unit root processes with constant

correlations. In the remainder of my paper, I explore how incorporating realistic joint dynamics

of dividend growth and consumption growth into an endowment economy affects its equilibrium

stock price dynamics.

I formulate a new DGP that matches both procyclical dividend-consumption comovement

and countercyclical consumption growth volatility, which extant DGPs fail to do (e.g., Campbell

and Cochrane, 1999; Bansal, Kiku, and Yaron, 2012; Segal, Shaliastovich, and Yaron, 2015;

Bekaert and Engstrom, 2017). In my model, consumption receives both a “fundamental” shock

and an “event” shock per period. Fundamental shocks to consumption drive contemporaneous

shocks to dividends. The dividend shocks react more to fundamental shocks during booms (when

past consumption growth has been high). This mechanism generates both procyclical dividend
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growth volatility and procyclical conditional covariance between consumption and dividends.

In addition, the DGP exhibits time-varying volatility of negatively skewed event shocks to

consumption. This mechanism generates countercyclical consumption growth volatility. The

estimation results of the DGP reveal that the filtered fundamental shocks explain on average

82% of the total consumption growth variability, while the filtered event shocks explain as high

as 34%–58% during recessions.

Finally, I solve a variant of the Campbell and Cochrane model (henceforth, CC) that

accommodates the new DGP. An approximate analytical solution suggests that the procyclical

dividend-consumption comovement in the new DGP entails two new procyclical terms in the

total amount of risk: dividend risk (via cash flows) and comovement risk (via valuation). The

first term is introduced by the DGP. The second term captures how pricing is affected by a

persistent and procyclical dividend variance induced by dividends’ procyclical exposure to the

fundamental consumption shock. When a positive fundamental shock occurs in this period,

future dividends are expected to react more to future consumption shocks, driving up the ex-

pected dividend growth variance. This variance becomes capitalized in stock prices, leading

stock prices to react more positively to consumption shocks during booms than during reces-

sions. The numerical solution further shows that, without procyclical dividend-consumption

comovement, a CC model with countercyclical risk aversion and macroeconomic uncertainty

tends to generate an amount of consumption risk that is unrealistically high. My model gen-

erates a more realistic magnitude of consumption risk, while fitting various salient asset return

features in the data.

The equity premium in my model can be expressed as the product of a countercyclical

price of risk (which is consistent with CC) and a time-varying amount of risk that comprises

both procyclical (which is new) and countercyclical terms. These cyclical price-of-risk and

amount-of-risk terms result in countervailing effects on the dynamic behavior of the conditional

equity premium and the magnitude of the unconditional equity premium. The model implies a

conditional equity premium that no longer increases monotonically when consumption decreases.

This is because a negative fundamental consumption shock results in both higher risk aversion

and lower procyclical terms in the amount of risk. In addition, the model generates a lower

unconditional equity premium. This is because stock prices in my model incorporate procyclical
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risks, rendering the market asset less risky. The numerical solution confirms this theoretical

prediction, which also yields a more realistic Sharpe Ratio.

It is noteworthy that Duffee (2005) relates this procyclical amount of consumption risk

to a “composition effect”: The agent’s consumption growth is more correlated with market

returns when financial wealth is a larger share of total wealth. My paper does not directly test

this “composition effect,” and does not explicitly model nonfinancial wealth. However, in equi-

librium, my model does rationalize a positive relationship between the dividend-consumption

comovement and the equity valuation ratio. Moreover, the comovement estimates filtered from

my DGP are significantly and negatively correlated with the well-known cay variable from

Lettau and Ludvigson (2001). Therefore, the two explanations are potentially consistent.

The outline of this paper is as follows. Section 2 examines the cyclicalities of the amount

of consumption risk and its components. Section 3 formulates and estimates the new DGP. Sec-

tion 4 analyzes a variant of Campbell and Cochrane’s (1999) habit formation model. Concluding

comments are offered in Section 5.

2 The Duffee Puzzle revisited, econometrically

The decomposition of the amount of consumption risk, as shown in Eq. (1), yields an

immediate cash flow conditional covariance, Covt (∆dt+1,∆ct+1), and a valuation conditional

covariance, Covt
(
rmt+1 −∆dt+1,∆ct+1

)
. In this section, I exploit a bivariate dynamic depen-

dence model in the GARCH class to revisit the Duffee Puzzle and identify the cyclicalities of

the two conditional covariances that constitute the puzzle.

2.1 The dynamic dependence model and estimation

To estimate conditional covariance, Duffee (2005) follows Campbell (1987) and Harvey

(1989) and projects realizations of products of residuals on a set of instruments. This projection

approach automatically enforces the identity of Eq. (1), as long as the instruments are the same

on the left and right sides of the equation. However, the disadvantage is that it can only

accommodate high persistence in conditional second moments by entering many lags into the

set of instruments, which leads to overfitting. As a result, I follow the GARCH literature to

estimate the three conditional covariances. Bivariate conditional second moments are difficult
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to model in the GARCH class, and the dynamic conditional correlation (DCC) framework is

the state of the art. While GARCH-class models include only lagged realized second moments

as instruments, my framework also accommodates business cycle instruments to help capture

slow-moving cyclical behavior in conditional second moments. To achieve simplicity and to

avoid concerns about nonlinearity, I use the NBER recession indicator (1=recession, 0=non-

recession).

My empirical analysis uses four variables: log consumption growth ∆ct+1, log market

return rmt+1, log dividend growth ∆dt+1, and the difference between market returns and dividend

growth, rmt+1−∆dt+1. I first project each series onto the NBER recession indicator to obtain the

residual series. Denote ε̃t+1 ≡
[
ε̃1,t+1 ε̃2,t+1

]′
as the bivariate residual vector. Denote hi,t as

the conditional variance of ε̃i,t+1, ∀i ∈ {1, 2}. I follow Engle (2002) and express the conditional

variance-covariance matrix of the residuals, Ht ≡ Et
[
ε̃t+1ε̃

′
t+1

]
, in a quadratic form:

Ht = ΛtCorrtΛt, (2)

where Λt is a diagonal matrix with
√
hi,t on the diagonal, and Corrt is a symmetric matrix

with 1s on the diagonal and the model-implied conditional correlation on the off-diagonal.

Under quasi-likelihood assumptions (Bollerslev and Wooldridge, 1992; White, 1996), the

log-likelihood of such a dynamic dependence model can be written as the sum of a volatility term

and a correlation term. As a result, the model can be estimated by maximizing each term in

separate steps. In the first step, I apply the maximum likelihood estimation (MLE) methodology

to estimate the conditional variance for each residual series. Using the standardized residuals

obtained from the first step, I then apply the quasi-maximum likelihood asymptotic theory

to estimate the conditional correlation. The conditional variance and conditional correlation

models are described in Sections 2.1.1 and 2.1.2, respectively.

2.1.1 Conditional variance

The empirical literature provides robust evidence that innovations of consumption growth

and market returns are heteroskedastic (e.g., Bollerslev, Engle, and Wooldridge, 1988; Kandel

and Stambaugh, 1990; Lettau, Ludvigson, and Wachter, 2008) and non-Gaussian (e.g., Nelson,

1991; Glosten, Jagannathan, and Runkle, 1993; Bekaert and Engstrom, 2017). Given the
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empirical focus of this section, I choose univariate volatility specifications for consumption

growth and market returns using the Bayesian information criterion (BIC) from a class of

models in the GARCH literature.1

The choice for consumption growth ∆ct+1 is the “GED-GARCH-qt” form. The residual

ε̃t+1 follows a symmetric conditional generalized error distribution (GED) with an unknown

shape parameter τ .2 The conditional variance ht has a generalized autoregressive conditional

heteroskedastic process with a cyclical long-run mean h (1 + qt):

ht = h (1 + qt) + α
[
ε̃2t − h (1 + qt−1)

]
+ β

[
ht−1 − h (1 + qt−1)

]
, (3)

qt = νSNBERt, (4)

where h denotes the predetermined unconditional variance; α + β < 1, and α, β > 0. The qt

process is modeled as a multiple of the standardized NBER recession indicator, denoted by

SNBERt,
3 so that the average conditional variance E(ht) is h; ν is an unknown parameter.

The sign of ν identifies cyclicality within the model. A positive (negative) ν indicates that the

long-run mean of conditional variance is countercyclical (procyclical), and a zero ν fails to reject

the null of a constant long-run mean. The GED-GARCH model (Nelson, 1991) is a special case

of ν = 0.

The choice for market returns rmt+1 is the “BEGE-GARCH-qt” form, a variant of the “Bad

Environment-Good Environment” (BEGE) model by Bekaert, Engstrom, and Ermolov (2015).

The residual follows a composite distribution of two centered gamma shocks that independently

govern the dynamics of the two tails. The composite residual follows ε̃t+1 = σhpω̃hp,t+1 −

σhnω̃hn,t+1, where ω̃hp,t+1 ∼ Γ(hpt, 1) − hpt ≡ Γ̃(hpt, 1), ω̃hn,t+1 ∼ Γ(hnt, 1) − hnt ≡ Γ̃(hnt, 1),

shape parameters hpt > 0 and hnt > 0 for all t, and scale parameters σhp > 0 and σhn > 0.

The left- and right-tail shape parameters — hnt and hpt — are modeled as follows:

hnt = hn (1 + qt) + αhn

[
ε̃2t

2σ2
hn

− hn (1 + qt−1)

]
+ βhn

[
hnt−1 − hn (1 + qt−1)

]
, (5)

hpt = hp (1 + qt) + αhp

[
ε̃2t

2σ2
hp

− hp (1 + qt−1)

]
+ βhp

[
hpt−1 − hp (1 + qt−1)

]
, (6)

1Table IA1 of the Internet Appendix provides the detailed model selection results for consumption growth
and market returns.

2τ < (>) 2 indicates that this GED distribution exhibits heavier (lighter) tails than the Gaussian distribution.
3The value of SNBER is -0.4029 in non-recession months and 2.4782 in recession months.
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where hn and hp are unknown parameters because they depend on the values of scale parameters

σhn and σhp, respectively; αhn + βhn < 1, αhp + βhp < 1, and αhn, αhp, βhn, βhp > 0; and qt is

modeled as in Eq. (4). The implied total conditional variance ht is σ2
hphpt + σ2

hnhnt. Similarly,

a positive (negative) ν indicates countercyclical (procyclical) total return variance.

For the purpose of consistency, I choose conditional variance models for market return

components from the BEGE-GARCH framework. In addition to the full BEGE model (above),

I also consider two half BEGE models, “BEGE-hnt-GARCH-qt” and “BEGE-hpt-GARCH-qt”,

that allow heteroskedasticity from the left- and right-tail gamma shocks, respectively. Consistent

with the weakly positive skewness of dividend growth ∆dt+1 and the strongly negative skewness

of the valuation part of market returns rmt+1 − ∆dt+1, the choice for ∆dt+1 is the BEGE-hpt-

GARCH-qt model, and the choice for rmt+1 −∆dt+1 is the BEGE-hnt-GARCH-qt model. These

choices reveal that dividend growth (valuation) is important in explaining the right-tail (left-

tail) heteroskedasticity of market returns.4

2.1.2 Conditional correlation

The conditional correlation matrix Corrt from Eq. (2) is written as
(
Q∗t
)−1

Qt

(
Q∗t
)−1

,

where Q∗t is the diagonal matrix with the square root of the diagonal element of Qt on the

diagonal so that the diagonal entries of Corrt are 1s. Denote zt+1 ≡
[
z1,t+1 z2,t+1

]′
=

Λ−1
t ε̃t+1 as the standardized residuals. The key dynamic conditional correlation process is

modeled as follows:

Qt = Q12

 1 1 + qt

1 + qt 1

+ α12

ztz′t −Q12

 1 1 + qt−1

1 + qt−1 1




4Table IA2 of the Internet Appendix provides the detailed model selection results for market return compo-
nents. I detail three additional technical notes below to further explain the full and half BEGE models in this
section. First, one qt process for both hpt and hnt is suitable in fitting market return conditional variance because
both shape parameters hpt and hnt are countercyclical in data. That is, there are higher chances of observing
extreme return residual realizations from both tails during recessions. One can consider a full BEGE model with
two qt processes and two ν estimates associated with the two tails, respectively. However, a full BEGE model
with two qt processes exhibits two disadvantages: (1) more parameters mean a more complex estimation system
with slower convergence; (2) given the slow-moving nature of qt, it might be empirically difficult to separate
the long-run mean of the total conditional variance into two (tail) processes. As a result, there may be little
advantage in allowing two qt processes when estimating the conditional variance of market returns. Second,
centered left-tail (right-tail) gamma shocks have positive densities for both negative and positive realizations,
albeit bounded above (below). As a result, a “half” BEGE model does not mean that it allows heteroskedasticity
from only positive or only negative realizations. Third, the conditional variance of BEGE-hpt-GARCH-qt is
ht = σhphpt + σhnhn; the conditional variance of BEGE-hnt-GARCH-qt is ht = σhphp+ σhnhnt.
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+ β12

Qt−1 −Q12

 1 1 + qt−1

1 + qt−1 1


 , (7)

where Q12 denotes the predetermined constant correlation of the standardized residuals, qt is

modeled as in Eq. (4), and standard stationarity assumptions apply. I refer to this model as

“DCC-qt” in this paper. It is noteworthy that Engle (2002) assumes a constant long-run mean.

Meanwhile, Colacito, Engle, and Ghysels (2011) use a weighted average of past correlations to

model the long-run conditional mean. Unlike these models, the present DCC model directly

links time-varying correlation to the state of the economy through an instrumented process qt.

2.2 Data

I follow Duffee (2005) to use monthly data indexed with t. Monthly real consumption

is defined as the sum of seasonally adjusted real aggregate expenditures on nondurable goods

and services (source: U.S. Bureau of Economic Analysis, BEA). The deflators for aggregate

nondurable goods and services consumption are different (source: BEA). Monthly dividends

are measured by the real 12-month trailing dividends of the NYSE/AMEX/NASDAQ uni-

verse (source: Center for Research in Security Prices, CRSP), allowing for reinvestment at

the gross risk free rates (source: CRSP). Inflation is calculated using the CPI (source: Fed-

eral Reserve Economic Data, FRED). Monthly consumption (dividend) growth is defined as

log-differenced real consumption (dividend) per capita. The monthly population is obtained

from the BEA. Monthly real market returns are the log value-weighted market return including

dividends (source: CRSP, NYSE/AMEX/NASDAQ), minus inflation. The sample spans the

period between January 1959 and June 2014.

It is well-known that measured aggregate consumption data are flow data that are reported

as total consumption over an extended period. This temporal aggregation results in a non-zero

autoregressive coefficient of aggregate consumption growth (Working, 1960), even if the true

consumption growth is i.i.d. The temporal aggregation effect could also lead to biases in the

estimated conditional covariances, as thoroughly discussed in Duffee (2005, pp. 1691-1694).

Therefore, I follow the literature and construct a measure of monthly consumption growth that

removes the autoregressive terms up to the third order, ∆ct+1−
∑3

i=1 φi(∆ct+1−i− c), where φi

is the ith-order autoregressive coefficient and c is the sample mean. For the rest of this paper,
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“consumption growth” refers to this measure that controls for temporal aggregation.

The present research uses observed dividend data to identify stylized facts (this section)

and provide exact data point estimates to be matched by a more general economic model (later).

As a result, a one-time dividend event — unique and anticipated never to recur — should be

excluded from the analysis because such an event is not drawn from the distribution relevant to

current and future prices. In my sample period, I identify two extremely large dividend payments

that significantly inflated dividend growth volatility and are considered unrepresentative: (1)

The Microsoft special dividend payment in November 2004, and (2) the expiration of the Jobs

and Growth Tax Relief Reconciliation Act of 2003 (known as the “The Bush Tax Cuts”) on

December 31, 2012, which incentivized a special dividend uptick during Q4 of 2012. I provide

two observations that support this identification. First, while the 99th percentile of the real

12-month trailing dividend growth distribution is 3%, monthly dividend growth rates during

November 2004 and December 2012 are 13% and 7%, respectively. Second, due to the 12-month

trailing calculation, these two events result in the two lowest monthly dividend growth rates 12

months later: -7% in November 2005 and -4% in December 2013. Meanwhile, the 1st percentile

of the distribution is -2.5%. To treat these two events, I linearly interpolate the corresponding

CRSP-implied dividend data points using values before and after, prior to the 12-month trailing

calculation.

2.3 Results

2.3.1 The total conditional covariance

In this section, I discuss the core object of interest: the cyclicality of the conditional

covariance between market returns and consumption growth. The dynamic dependence model

implies three sources of cyclicality: consumption growth volatility, return volatility, and their

correlation. As shown in Panel A of Table 1, the estimated cyclicality parameters (ν) in both

consumption growth and market return conditional variance models are significant and positive,

suggesting countercyclical conditional volatilities. This result is consistent with Bollerslev,

Engle, and Wooldridge (1988), Schwert (1989), Kandel and Stambaugh (1990), and Hamilton

and Lin (1996), among many others. In terms of economic magnitude, Panel B shows that the

average conditional volatility of consumption growth is 0.0030 conditioned on “No Recession”
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periods and 0.0032 conditioned on “Recession” periods; the t-statistic of their difference is 2.18.

Similarly, the average return conditional volatility is 0.0406 during non-recession periods and

0.0579 during recession periods (t-statistic=37.94).

Table 1 also provides strong evidence for a procyclical return-consumption conditional

correlation. The significant and negative cyclicality parameter estimate in Panel A (ν=-0.1153,

SE=0.0339) implies an average conditional correlation of 0.1652 during non-recession periods

and 0.1128 during recession periods.5 Moreover, Panel B presents the fitted conditional correla-

tion averages in these two states of the economy, 0.1651 and 0.1099, respectively, and supports

a significantly lower average during recession periods (t-statistic=-9.66). It can be shown that

the model-implied averages are statistically close to the fitted averages.

The product of the three conditional second moment estimates yields the return-consumption

conditional covariance estimates. From Panel B of Table 1, the conditional covariance dynamics

appear weakly procyclical. This is expected because both the strongly countercyclical return

and consumption growth volatilities dampen their procyclical correlation. The implied condi-

tional sensitivity (beta) of market returns to consumption growth, measured as the ratio of the

conditional covariance to the consumption growth conditional variance, also exhibits weakly

procyclical behavior.

It is noteworthy that my empirical analysis uses the NBER recession indicator as the

business cycle instrument (as motivated in Section 2.1), which is different from Duffee’s (2005)

main instrument, the wealth-consumption ratio. As a robustness check, I examine how my

empirical estimates of return-consumption conditional comovement (correlation, covariance,

and beta) vary with the de-trended ĉay from Lettau and Ludvigson (2001). Consistent with

Duffee (2005), all three comovement estimates are significantly and negatively correlated with

ĉay; Table IA3 of the Internet Appendix provides more details.

2.3.2 The decomposition

In this section, I decompose the total return conditional covariance into an immediate

cash flow component and a valuation component, and examine the cyclicalities of all second

5The long-run mean is modeled as Q12(1 + qt) = Q12(1 + ν × SNBERt). Non-recession long-run mean
calculation: 0.1652 = 0.1579×(1+(-0.1153×-0.4029)), where -0.4029 is the non-recession value of the standardized
NBER recession indicator denoted by SNBERt (as introduced in Section 2.1) and 0.1579 is the predetermined
correlation of standardized residuals Q12 (as shown in Table 1); recession long-run mean calculation: 0.1128 =
0.1579×(1+(-0.1153×2.4782)), where 2.4782 is the recession value of SNBERt.
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moments pertinent to this decomposition. First, the conditional variances of the market return

components exhibit different cyclical behaviors. The dividend growth conditional variance is

found to be procyclical given the negative cyclicality parameter estimate shown in Table 2. The

average conditional volatility of dividend growth during recessions, 0.0098, is statistically smaller

than that during booms, 0.0118, with a t-statistic of -8.02. On the other hand, both the positive

cyclicality parameter estimate (from Panel A) and the significantly higher recession-period

conditional volatility average (from Panel B) constitute strong evidence for a countercyclical

valuation conditional variance.

Next, I focus on the two comovement estimation results. As shown in Table 2, the cycli-

cality parameter in the dividend-consumption conditional correlation model is estimated to be

significant and negative (ν=-0.1896, SE=0.1076), suggesting a procyclical conditional correla-

tion process. The conditional correlation fluctuates around 0.0152 during non-recession periods

and around 0.0075 during recession periods.67 The model-implied averages are statistically

close to their empirical counterparts at the 5% significance level, as shown in Panel B. More-

over, the dividend-consumption conditional covariance and beta also appear to be significantly

procyclical. All of the four procyclicality findings above — dividend-consumption correlation,

covariance, beta, and dividend volatility — are new to the literature.

The conditional correlation between the valuation part of market returns and consump-

tion growth behaves procyclically given the negative cyclicality parameter estimate (ν=-0.1088,

SE=0.0328). The implied non-recession average is 0.1554, while the recession average is 0.1088.8

Similar averages are shown using empirical estimates, per Panel B. Importantly, the strongly

6The long-run mean is modeled as Q12(1 + qt) = Q12(1 + ν × SNBERt). Non-recession long-run mean
calculation: 0.0152 = 0.0141×(1+(-0.1896×-0.4029)), where -0.4029 is the non-recession value of SNBERt and
0.0141 is Q12 (as shown in Table 2); recession long-run mean calculation: 0.0075 = 0.0141×(1+(-0.1896×2.4782)),
where 2.4782 is the recession value of SNBERt.

7At the monthly frequency, the unconditional correlation between dividend growth and consumption growth
is 0.0569 using the raw data, 0.0242 using residuals, and 0.0141 using standardized residuals; see more details
in Table IA4 of the Internet Appendix. The quarterly unconditional correlation between dividend growth and
consumption growth (i.e., quarterly growth rate=the sum of monthly growth rates within the same quarter)
in my sample is 0.1568. In an earlier version of the paper, I considered Shiller’s monthly aggregate dividend
data. One can replicate his data in two steps: (1) obtain the 12-month trailing CRSP-implied dividend levels
at the quarterly frequency, and (2) calculate dividends for other months using linear interpolation, e.g., April =
2
3
March + 1

3
June and May = 1

3
March + 2

3
June, and so on. Due to this linear interpolation methodology, Shiller’s

monthly dividend growth series (essentially capturing information at the quarterly frequency) is smoothed and
has an extremely high correlation of 0.18 with the monthly consumption growth. Hence, his monthly dividend
data are not suitable in the present research.

8The long-run mean is modeled as Q12(1 + qt) = Q12(1 + ν × SNBERt). Non-recession long-run mean
calculation: 0.1554 = 0.1489×(1+(-0.1088×-0.4029)), where -0.4029 is the non-recession value of SNBERt and
0.1489 is Q12 (as shown in Table 2); recession long-run mean calculation: 0.1088 = 0.1489×(1+(-0.1088×2.4782)),
where 2.4782 is the recession value of SNBERt.
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countercyclical consumption and valuation volatilities (discussed above) dampen this procyclical

correlation, resulting in an overall weakly countercyclical valuation covariance.

In summary, I provide evidence for a procyclical return-consumption conditional covari-

ance, even after adopting sophisticated conditional variance models (which account for het-

eroskedasticity, non-Gaussianity, and asymmetry) and using a long sample period (which in-

cludes the 2007-2008 financial crisis). Moreover, I show that the conditional covariance between

dividend growth and consumption growth is a unique and consistent source of procyclicality in

the total return-consumption conditional covariance, given the current return decomposition.

This is the core empirical contribution of my paper.

Although inspired by the identity of Eq. (1), this decomposition analysis does not en-

force its mathematical equality in the estimation in order to gain flexibility with the model.

As a validation check, Table 3 conducts two closeness tests comparing the direct (left side of

Eq. (1)) and the indirect (right side) estimates of return-consumption conditional correlation,

covariance, and beta. Panel A is a correlation test; the regression coefficients of the indirect

return-consumption conditional comovement estimates on the direct estimates are all statis-

tically close to 1 at the 5% significance level. Panel B is a series of equality tests using key

sample moments, including mean, standard deviation, and scaled skewness. Sample moments

calculated using the direct estimates are all within 1.96 standard deviations from the indirect

point estimates. Hence, the two statistical tests support the empirical identity of Eq. (1).

2.3.3 Time series

Although conditional covariances play a central role in asset pricing, conditional corre-

lations are more intuitive and easier to interpret and illustrate. Fig. 1 shows the dynamics

of the estimated return-consumption conditional correlation. First, there exists a wide time

variation around its sample mean of 0.16 over the past 60 years, reaching lows of (roughly)

0 during the 1960 recession and the 2007-2008 recession and a high of 0.31 in early 2000.

Hump-shaped patterns are evident during the 1960s, 1970s, and 1980s expansions. Second, the

return-consumption conditional correlation appears to be persistent, which is consistent with

its AR(1) coefficient estimate of 0.95 from Table 1. Furthermore, incorporating the dynamics of

the conditional variances, the implied conditional covariance (beta) exhibits a similar pattern
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to the conditional correlation, but tends to be higher before (after) the 1990s. This is because

the conditional volatility of consumption growth has been consistently found to be lower after

1992.9

In implementing the identity of Eq. (1), the return-consumption conditional correlation

Corrt(r
m
t+1,∆ct+1) can be expressed as follows:

Corrt(r
m
t+1,∆ct+1) =

σt(∆dt+1)

σt(rmt+1)
Corrt(∆dt+1,∆ct+1)

+
σt(r

m
t+1 −∆dt+1)

σt(rmt+1)
Corrt(r

m
t+1 −∆dt+1,∆ct+1). (8)

Fig. 2 depicts the dynamics of these two components in the correlation space.10 In particular,

the immediate cash flow component is smaller in magnitude and less persistent. Its highest

value (0.10) appeared in April 1984, which coincided with the largest drop in monthly real

consumption during the sample period (-12.90 annualized percents11) and a large dividend-

consumption correlation of 0.25. To contextualize this magnitude (0.10), the immediate cash

flow component accounted for 0.10 of the total return-consumption correlation (0.24) in that

month, or a contribution of 41.67%. There is evidence that the immediate cash flow component,

on average, contributes more to the total return-consumption correlation during booms (5.63%)

than during recessions (1.95%). Notably, the three highest contributions were 52.98% in the

late 1980 expansion, 53.63% in the 2009 expansion, and 45.70% in the 2013 expansion.

2.4 Summary

I conclude the empirical part of the paper with a list of stylized facts on the cyclicalities

of the relevant conditional second moments:

9Figure IA1 of the Internet Appendix provides the time series plot of the consumption growth conditional
volatility.

10Fig. 2 uses the difference between the estimates of Corrt(r
m
t+1,∆ct+1) and the estimates of (a)

σt(∆dt+1)

σt(r
m
t+1)

Corrt(∆dt+1,∆ct+1) as the proxy for the non-cash flow component, or (b) above. Hence, this dif-

ference is an indirect measure of the non-cash flow component. Figure IA2 of the Internet Appendix compares
the indirect and direct measures of the non-cash flow component, and shows that these two time series are
correlated at 0.99.

11In early 1984, the nominal non-durable consumption level decreased significantly while its price index in-
creased, which together resulted in the largest drop in real consumption growth during the sample period and
a large increase in consumption volatility. Figure IA1 of the Internet Appendix reports the time series plots of
conditional volatilities of consumption growth and dividend growth.

13



(a) The conditional variance of ∆c is countercyclical. Kandel and Stambaugh (1990)

(b) The conditional variance of ∆d is procyclical. New

(c) The conditional correlation between ∆d and ∆c is procyclical. New

(d) The conditional covariance between ∆d and ∆c is procyclical. New

(e) The conditional sensitivity (beta) of ∆d to ∆c is procyclical. New

(f) The conditional variance of rm −∆d is countercyclical. New

(g) The conditional variance of rm is countercyclical. Schwert (1989)

(h) The conditional covariance between rm −∆d and ∆c is countercyclical. New

3 A new DGP for the joint dividend-consumption dynamics

Extant consumption-based asset pricing theories typically do not discuss whether the

modeling choice of aggregate dividends is realistic or not. In a Lucas tree economy (Lucas, 1978),

dividends equal consumption, but the literature mostly models them as unit root processes with

constant correlations.12 Table 4 summarizes seven consumption-based asset pricing models and

their abilities to match the empirical facts established in Section 2. Using suggested parameter

choices, DGPs of these models fail to generate realistic dynamics of dividend-consumption

comovement and dividend variance. Furthermore, these models imply either a countercyclical

or zero return-consumption covariance, which contradicts the Duffee Puzzle.

This section presents a new DGP that has the potential to accommodate Facts (a)–(e)

into a consumption-based asset pricing model with a minimum number of state variables. To

enhance the plausibility of the new DGP, I discuss the economic interpretations of the state

variables and shocks given the estimation results. In Appendix Appendix A, I discuss why

alternative modeling approaches may be less suited to fit the salient empirical facts.

3.1 The DGP

The consumption growth, ∆ct+1, is assumed with a constant mean c and a composite

shock structure:

∆ct+1 = c+ σcω̃c,t+1 + σnω̃n,t+1, (9)

12For example, Campbell and Cochrane (1999) assume constant comovement and variances. Bansal and Yaron
(2004) assume a zero dividend-consumption comovement given their shock assumption. Bansal, Kiku, and Yaron
(2012) allow dividend growth to have a constant exposure to the consumption shock.
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ω̃c,t+1 ∼ N(0, 1),

ω̃n,t+1 ∼ Γ(nt, 1)− nt.

The “fundamental” consumption shock, ω̃c,t+1, is a Gaussian shock with unit standard deviation,

and its associated scale parameter σc is positive. The “event” consumption shock, ω̃n,t+1, follows

a centered, positively-skewed, and heteroskedastic gamma distribution with a strictly positive

shape parameter nt. To realistically capture negative skewness in consumption growth, scale

parameter σn is negative. Given the moment generating functions of Gaussian and gamma

shocks, the conditional variance of ∆ct+1, denoted by Vc,t, is a linear function of nt: Vc,t =

σ2
c +σ2

nnt. As a result, nt is referred to as the macroeconomic uncertainty state variable in this

DGP.

The dividend growth, ∆dt+1, has the following process:

∆dt+1 = d+ φd
(
Vc,t − V c

)
+ btσcω̃c,t+1 + σdω̃d,t+1, (10)

ω̃d,t+1 ∼ Γ(Vd, 1)− Vd.

The expected dividend growth has a constant part and a time-varying part that decreases

with macroeconomic uncertainty (φd < 0); V c denotes the mean of Vc,t. State variable bt

captures the time-varying sensitivity of dividend growth to consumption growth through the

fundamental shock. The dividend-specific shock, ω̃d,t+1, follows a centered, positively-skewed,

and homoskedastic gamma distribution with a strictly positive shape parameter Vd. Scale

parameter σd is positive to capture positive dividend growth skewness.13

The three shocks are mutually independent. ∆ct+1 and ∆dt+1 are observables. The two

latent state variables, nt and bt, follow autoregressive processes that have positive exposures to

the event and fundamental shocks, respectively (φn, φb, σnn, λb > 0):

nt+1 = (1− φn)n+ φnnt + σnnω̃n,t+1, (11)

bt+1 = (1− φb)b+ φbbt + λbσcω̃c,t+1. (12)

13The conditional unscaled skewness Et
[
(∆dt+1 − Et(∆dt+1))3

]
is 2σ3

dVd. Proof: Et
[
(∆dt+1 − Et(∆dt+1))3

]
=

Et
[
(btσcω̃c,t+1 + σdω̃d,t+1)3

]
=Et

[
(btσcω̃c,t+1)3 + (σdω̃d,t+1)3 + 3(btσcω̃c,t+1)2σdω̃d,t+1 + 3btσcω̃c,t+1(σdω̃d,t+1)2

]
=

Et
[
0 + (σdω̃d,t+1)3 + 0 + 0

]
=Et

[
(σdω̃d,t+1)3

]
=2σ3

dVd.
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The key reason for this DGP to imply both countercyclical consumption growth variance

and procyclical dividend growth variance and comovement is the flexible use of the two consump-

tion shocks. The DGP exhibits time-varying volatility of consumption growth through event

consumption shocks. Meanwhile, dividends react more to fundamental consumption shocks in

booms (times when past consumption growth has been high). The cyclicalities of the two state

variables can be proved analytically:

� Fact Check (a): nt+1 is countercyclical, given Covt(∆ct+1, nt+1) = σnσnnnt < 0.

� Fact Check (e): bt+1 is procyclical, given Covt(∆ct+1, bt+1) = λbσ
2
c > 0.

The procyclicalities of dividend growth variance and dividend-consumption comovement follow:

� Fact Check (b): The conditional variance of dividend growth, b2tσ
2
c + σ2

dVd, is procyclical

if bt >
(φb−1)b̄
φb

. (Note: (φb−1)b̄
φb

< 0)

� Fact Check (c): The conditional correlation between dividend and consumption growth,

btσ2
c√

σ2
c+σ2

dnt
√
b2tσ

2
c+σ2

dVd
, is procyclical given a countercyclical nt and a procyclical bt.

� Fact Check (d): The conditional covariance between dividend and consumption growth,

btσ
2
c , is procyclical.

3.2 DGP estimation results

Given that there is no feedback from the cash flow process to consumption, I estimate the

consumption growth system {∆ct, nt}Tt=1 and the dividend growth system {∆dt, bt}Tt=1 in two

separate steps using MLE-type methodologies. Appendix Appendix B details the estimation

procedure.

The estimation results in Table 5 confirm that the new DGP matches Facts (a)–(e).

Confirming Fact (a), consumption growth depends negatively on the positively-skewed het-

eroskedastic event shock given the estimate of σn, while the macroeconomic uncertainty state

variable nt has a positive exposure to the event shock given the estimate of σnn. Confirming Fact

(e), the estimate of λb suggests that the new comovement state variable bt loads significantly

and positively on the fundamental consumption shock, rendering bt a procyclical variable. To

provide direct evidence for Facts (a) and (e), the regression coefficients of nt and bt on the NBER

recession indicator are 0.5926 (SE=0.0354) and -0.1240 (SE=0.0190), respectively. Similarly,

confirming Facts (b)–(d), the DGP-implied dividend growth conditional variance, dividend-
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consumption conditional correlation, and conditional covariance are all procyclical given their

significant and negative NBER loadings.

Fig. 3 depicts the time variation in the monthly estimates of the two DGP state variables:

macroeconomic uncertainty nt (top) and dividend-consumption comovement bt (bottom). The

monthly nt estimates exhibit a persistent process that occasionally spikes, mostly during reces-

sions. Its countercyclical nature determines the countercyclicality of the conditional variance of

consumption growth, σ2
c +σ2

nnt. Given the estimation, while σ2
c contributed by the fundamental

shock explains on average 82% of the total consumption growth variance, σ2
nnt contributed by

the event shock could explain as high as 34%–58% during recessions. On the other hand, as

shown in the bottom plot of Fig. 3, the dividend-consumption comovement state variable bt

is a less persistent process, which is consistent with observations from the empirical model in

Section 2. The monthly bt estimates exhibit a significant and negative correlation of -0.25 with

the NBER recession indicator.

3.3 Economic interpretation of consumption shocks

The consumption shock structure plays a crucial role in enabling this DGP to simultane-

ously satisfy Facts (a)–(e). In the following section, I motivate the economic interpretations of

the two consumption shocks.

First, the filtered fundamental consumption shock ω̃c is procyclical, given its significant

and negative correlation with the NBER recession indicator at various frequencies (monthly:

-0.18; quarterly: -0.27; Panel A of Table 6). From the top plot of Fig. 4, negative spikes in

the filtered ω̃c often appear during recessions. Moreover, the fundamental shock also comoves

significantly and negatively with the de-trended quarterly consumption-wealth ratio ĉay from

Lettau and Ludvigson (2001), given evidence from Table 6 and Fig. 4. This negative relationship

is consistent with the DGP. In this DGP, a unit fundamental shock at time t increases bt and

has persistent and positive effects on the expected future dividend-consumption comovement

and dividend variance. This variance becomes capitalized in financial wealth, inducing a higher

asset price. Finally, to justify the statistical assumptions about the fundamental shock, Panel

B of Table 6 shows that the filtered fundamental shock is statistically close to a standardized

Gaussian shock.
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Second, as shown in the bottom plot of Fig. 4, major positive spikes of the filtered event

consumption shock ω̃n occur during recessions. Because consumption growth loads negatively

on the event shock, these spikes reflect extreme negative consumption growth events. Table 6

formally confirms the countercyclicality of ω̃n, as evidenced by its correlation of 0.13 (0.25) with

the monthly (quarterly) NBER recession indicator. In addition, ĉay appears uncorrelated with

the filtered event shock ω̃n and dividend-specific shock ω̃d. This result is consistent with the

theory, while in turn supports the possibly close economic relationship between ĉay and the

fundamental shock, as discussed above.

It is noteworthy that several recent models in the consumption-based asset pricing liter-

ature have attempted to model consumption growth innovation with two independent shocks.

The continuous-time model in Longstaff and Piazzesi (2004) models the consumption growth

innovation with a Brownian motion and a jump process — which are conceptually similar to

the Gaussian fundamental shock and the gamma event shock in my DGP. Closer to my model,

the DGP in Bekaert and Engstrom (2017) features two independent heteroskedastic gamma

shocks, one associated with the “good” volatility and the other with “bad” volatility. In a

similar vein, Segal, Shaliastovich, and Yaron (2015) explore good and bad shocks in a long-run

risk framework. However, none of these models accommodate realistic dividend-consumption

comovement.

4 An external habit model

The theoretical model in this section explores how incorporating realistic joint dynamics of

dividend growth and consumption growth into an endowment economy affects equilibrium stock

price dynamics, thus potentially accommodating the Duffee Puzzle. Between the two puzzle

components, the procyclical cash flow conditional covariance is immediately satisfied given the

new DGP. However, different consumption-based asset pricing paradigms have different impli-

cations for the cyclicality of the valuation component of the puzzle. In particular, the external

habit formation paradigm is suitable to structurally examine the Duffee Puzzle for the following

reasons. First, Campbell and Cochrane (1999; CC) naturally entails a countercyclical valuation

covariance through risk aversion: the effect of consumption shocks on equity valuation ratios is

amplified when risk aversion is higher. Second, as I show later, an endowment economy with
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procyclical dividend risk requires a countercyclical price of risk to generate realistic, procycli-

cal equity prices. Third, this paradigm implies an equity premium that equals the product of

time-varying price of risk and amount of risk, which is consistent with Duffee’s (2005) original

theoretical motivation for studying market return covariance.

Section 4.1 introduces the model. Section 4.2 derives (approximate) analytical model

solution and implications. Section 4.3 tests the numerical model solution with a wide range of

empirical moments, featuring the eight stylized facts established in Section 2.

4.1 Pricing kernel, risk free rate, sensitivity function

I obtain the log real pricing kernel using the external habit preference as in the CC model:

mt+1 = lnβ − γ∆ct+1 − γ∆st+1, (13)

where β is the time discount factor, γ is the curvature parameter, and ∆st+1 is the change in

the log surplus consumption ratio, st+1−st. The dynamics of the log surplus consumption ratio

incorporate the new consumption growth innovation:

st+1 = (1− φs)st + φsst + λt (σcω̃c,t+1 + σnω̃n,t+1) , (14)

where φs is the persistence coefficient, st is the time-varying long-run mean, and λt is the

sensitivity function.

The real risk free rate, rft, is solved from the first-order condition for the consumption-

saving choice, rft = lnEt[exp(mt+1)]−1. Given the moment generating functions of the two

independent shocks in the pricing kernel (ω̃c,t+1, ω̃n,t+1), the risk free rate has an exact closed-

form solution:

rft = − lnβ + γc+ γ(1− φs)(st − st)−
1

2
γ2(1 + λt)

2σ2
c − [γ(1 + λt)σn − ln (1 + γ(1 + λt)σn)]nt.

(15)

As in the CC model, the intertemporal substitution effect through st and the precautionary

savings effect through λt counteract in determining the time variation in the risk free rate. The
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literature has proposed various modeling choices for the sensitivity function.14 The present

model proposes a strictly procyclical real rate, to be consistent with the few available empirical

findings such as Ang, Bekaert, and Wei (2008). Specifically, λt is chosen such that the second-

order Taylor approximation of the risk free rate is a constant as in the CC model:

λt =


1
St

√
1− 2(st − st)− 1, st ≤ smax,t

0, st > smax,t

(16)

where st = log(St) and smax,t are derived as functions of the free parameters and nt:

St =

√
(σ2
c + σ2

nnt)
γ

1− φs
, (17)

smax,t = st +
1

2
(1− S2

t ). (18)

St and smax,t are time-varying equivalent to those in the CC model. As a result, the dynamics of

the sensitivity function are determined by st and nt. As in the CC model, when the consumption

level is closer to the habit level (i.e., when st decreases), the sensitivity function increases. On

the other hand, the uncertainty state variable nt has a negative effect on λt through 1
St

and a

positive effect through st.

With this sensitivity function, the precautionary savings channel in the risk free rate

contains a higher-order moment, which is different from the CC model. For instance, a third-

order Taylor approximation of the risk free rate is given by:

rft ≈ − lnβ + γc− (1− φs)γ
2︸ ︷︷ ︸

≡rfCC

+
1

3
γ3(1 + λt)

3 σ3
n︸︷︷︸

<0

nt. (19)

rfCC denotes the constant risk free rate as in the CC model (which assumes only Gaussian

shocks). The appended precautionary savings term, 1
3γ

3(1 + λt)
3σ3
nnt, is strictly procyclical

given σn < 0. It captures that, in an extremely bad economic environment, the desire to

save might eventually dominate the intertemporal substitution effect, resulting in a lower risk

14For instance, in the CC model, the two effects completely offset each other, resulting in a constant risk free
rate. Wachter (2005, 2006) allow the intertemporal substitution effect to dominate in order to generate an upward
sloping real yield curve, thus resulting in a countercyclical short rate. Bekaert and Engstrom (2017) propose a
time-varying risk free rate such that the relative importance of the two effects varies over time, depending on the
magnitudes of “good” and “bad” uncertainty state variables defined in their model.
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free rate. Appendix Appendix C provides the derivations and graphical illustrations of the

sensitivity function.

4.2 Approximate analytical solution

This model features three state variables: the procyclical log surplus consumption ra-

tio (st), the countercyclical macroeconomic uncertainty (nt), and the procyclical dividend-

consumption comovement (bt).
15 The model does not have an exact closed-form solution. In

this section, I explore economic intuitions based on an approximate analytical solution.

4.2.1 Equity prices

I conjecture an approximate process for the log valuation ratio pdt ≡ ln
(
Pt
Dt

)
:

pdt = A0 +A1st +A2bt +A3b
2
t +A4nt. (20)

Then, I apply the Campbell–Shiller linearization to the log market return, rmt+1 = ln
(
Pt+1+Dt+1

Pt

)
≈

∆dt+1 + a1pdt+1 − pdt + a0, where a0 and a1 are linearization constants. Given the shock

assumptions and the pd conjecture, there are three types of shocks in this approximate log

market return: Gaussian shocks, χ2(1) shocks, and gamma shocks. Third, I apply a quadratic

Taylor approximation to the Euler equation; Et
[
exp(mt+1 + rmt+1)

]
can be approximated by

exp
[
Et(mt+1 + rmt+1) + 1

2Vt(mt+1 + rmt+1)
]
, according to Appendix Appendix D. The coefficients

in the conjectured log valuation ratio are solved in closed form by equating the terms of the

state variables; see Appendix Appendix E for the technical details and proofs.

I focus on the asset pricing implications of the new state variable introduced in this

paper, procyclical dividend-consumption comovement, denoted by bt. Through a pure cash flow

(CF) effect, the valuation ratio can be interpreted as reflecting the outlook on future dividend

growth, given that the expected value of the exponential of dividend growth increases with both

the expected growth and the conditional variance.16 In this model, the persistent procyclical

15The cyclicality of each state variable can be easily proved. Log surplus consumption ratio is procyclical
because Covt(st+1,∆ct+1) = λt(σ

2
c + σ2

nnt) > 0. As discussed in Section 3, macroeconomic uncertainty is
countercyclical because Covt(nt+1,∆ct+1) = σnσnnnt < 0, and dividend-consumption comovement is procyclical
because Covt(bt+1,∆ct+1) = λbσ

2
c > 0.

16The quadratic Taylor approximation shows Et [exp(∆dt+1)] ≈ exp
[
Et(∆dt+1) + 1

2
Vt(∆dt+1)

]
, where

Et(∆dt+1) is d̄ + φd(Vc,t − V c) and 1
2
Vt(∆dt+1) is 1

2
(b2tσ

2
c + Vdσ

2
d); notations and variables in this expres-

sion are introduced in Section 3. Importantly, b2tσ
2
c is driven by the procyclical exposure of dividend growth to
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dividend-consumption comovement entails a persistent procyclical dividend growth variance,

b2tσ
2
c + Vdσ

2
d. This variance becomes capitalized in stock prices. Therefore, this pure CF effect

suggests a positive relationship between b2t and pdt.

In addition, there is a risk premium effect. The total risk premium to compensate changes

in dividend growth can be approximated with −Covt(mt+1,∆dt+1) = γ(1 + λt)btσ
2
c . This

compensation increases with both the price-of-risk variable λt and the dividend-consumption

comovement variable bt. When a positive fundamental shock arrives, bt and st increase and

λt decreases simultaneously. If λt did not dominate, the model would generate a higher risk

premium and a lower asset price during good times, which is counterintuitive.17 However, the

strongly countercyclical price of risk in this habit formation model is able to dominate so that

there is an overall positive pdt–bt relationship through risk compensations.

Proposition 1. Given appropriate parameter choices, there exist positive comovement effects

on the equity valuation ratio, A2, A3 > 0.

As for the other two state variables, the surplus consumption ratio effect as in CC implies

a positive A1. Unlike CC, my model implies competing effects of macroeconomic uncertainty

that determine A4. The CF effect of uncertainty is well understood: when macroeconomic

uncertainty increases, future dividend growth is expected to decrease, driving down the current

price. However, higher uncertainty also induces more precautionary savings, driving down

the interest rate and lowering the total return demanded. This discount rate (DR) effect of

uncertainty also appears in Bekaert and Engstrom (2017). Given appropriate parameter choices,

the CF effect dominates the DR effect when extreme event shocks occur, yielding a negative

A4; in other times, A4 becomes positive.

consumption growth, and Vdσ
2
d is driven by the dividend-specific shock.

17This supports the second reason why a habit formation paradigm is more suitable to structurally examine
the asset pricing implications of a procyclical source of risk; see the first paragraph of Section 4.
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� Fact Check (f) and (g): Given the dividend growth dynamics in the new DGP and the

valuation ratio conjecture, the conditional variances of the log valuation ratio and the log

market return have the following approximate expressions:

V art(pdt+1) ≈ ςpd + ς1λt + ς2bt + ς3nt + ς4λ
2
t + ς5b

2
t + ς6λtbt + ς7λtnt + ς8λ

2
tnt,

V art(r
m
t+1) ≈ ςrm + a2

1ς1λt +
[
a2

1ς2 + 2a1λbσ
2
c

(
A2 + 2A3(1− φb)b

)]
bt + a2

1ς3nt + a2
1ς4λ

2
t

+
(
a2

1ς5 + 2a1ς2 + σ2
c

)
b2t +

(
a2

1ς6 + 2a1ς1
)
λtbt + a2

1ς7λtnt + a2
1ς8λ

2
tnt,

where ςpd, ςrm, ς1, ς2, ς3, ς4, ς5, ς6, ς8, a1, λb, σc, φb, and b are strictly positive constants,

and ς7 = 2A1A4σnσnn is positive when the cash flow effect of nt dominates the discount

rate effect, and negative vice versa. The model has the potential to generate countercyclical

variances if the countercyclical terms dominate.

4.2.2 The total amount of consumption risk

The approximate analytical solution of the total amount of risk is as follows:

btσ
2
c︸︷︷︸

[1]. Immediate cash flow covariance: dividend risk

+ a1A1λtσ
2
c︸ ︷︷ ︸

[2]. Valuation covariance: benchmark time-varying amount of risk as in CC

+
[
a1A2λb + 2a1A3(1− φb)bλb + 2a1A3φbλbbt

]
σ2
c︸ ︷︷ ︸

[3]. Valuation covariance: comovement risk

+ a1

[
A1λtσ

2
n +A4σnnσn

]
nt︸ ︷︷ ︸

[4]. Valuation covariance: downside risk and uncertainty risk,

,

(21)

where parameters σc, λb, φb, b, and σnn are positive and σn is negative, according to the DGP

estimation results in Table 5; a1 is a return linearization constant and is positive.

Term [1] captures the procyclical immediate cash flow covariance Covt(∆dt+1,∆ct+1),

or the amount of dividend risk. Meanwhile, the other three terms constitute the valuation

covariance component of the total amount of consumption risk. Specifically, Term [2] cap-

tures the amount of risk implied from linearizing the original CC model (with a Gaussian

consumption shock and constant volatility σc) and is strictly countercyclical. Term [3] captures
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the procyclical amount of dividend comovement risk through the valuation channel, which is

new to the literature. Term [4] captures the amount of risk that is associated with the coun-

tercyclical macroeconomic uncertainty. The cyclicality of Term [4] is state-dependent. At a

higher risk aversion state, the coefficient of macroeconomic uncertainty “
[
A1λtσ

2
n +A4σnnσn

]
”

is more likely to be positive, rendering Term [4] countercyclical. Derivations can be found in

Appendix Appendix E.

In summary, the new procyclical dividend-consumption comovement state variable entails

two new procyclical terms in the amount of risk: dividend risk (via cash flows) and comovement

risk (via valuation). This analytical solution thus demonstrates the potential of my model to

generate a realistic amount of risk in a habit formation framework.

� Fact Check (h): The model has the potential to generate a countercyclical valuation

covariance, Term [2]+Term [3]+Term [4], if the procyclical terms are counteracted by the

countercyclical terms.

4.2.3 The equity premium

The equity premium in this approximate analytical solution is expressed as the product

of a countercyclical price of risk γ(1 +λt) — which is consistent with CC — and a time-varying

amount of risk that now comprises both procyclical and countercyclical terms according to

Eq. (21) — which is new to the literature. These cyclical price-of-risk and amount-of-risk terms

exhibit countervailing effects on the magnitude of the unconditional equity premium and the

dynamic behavior of the conditional equity premium.

On the one hand, the introduction of the countercyclical uncertainty state variable nt

makes the asset riskier, since both the time-varying uncertainty and price of risk are higher

during economic turmoil. From this perspective, a higher unconditional equity premium is

expected. On the other hand, the introduction of the procyclical comovement state variable

bt lowers the level of the unconditional equity premium. This is because the amount of risk

now contains procyclical terms that counteract the countercyclical amount-of-risk terms and

the countercyclical price of risk. As a result, the asset becomes less risky.

Moreover, in contrast to the CC model, the conditional equity premium no longer mono-

tonically increases when consumption drops. This is because there are two types of consumption
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shocks in the economy. A negative event shock increases both the price of risk and the amount

of risk, resulting in a lower asset price and a higher equity risk premium; this effect is consis-

tent with conventional theories. As the core theoretical contribution of this paper, a negative

fundamental shock increases the price of risk while lowering the amounts of dividend risk and

comovement risk, resulting in competing effects on the conditional equity premium. This new

fundamental channel cannot be neglected because, empirically, this fundamental shock accounts

for more than 80% of the total consumption variance in a long sample (see discussions in Sec-

tion 3.2). Therefore, the ultimate impact of a current consumption shock realization on the

conditional equity premium can be nonlinear.

4.3 Numerical solution

To identify the implications of each state variable, I conduct an overlaying numerical

analysis. The baseline model, referred to as M(1) in the rest of the paper, is an adapted

Campbell and Cochrane (1999) model that features homoskedastic fundamentals and constant

dividend-consumption comovement; the time-varying surplus consumption ratio is the only state

variable. Then, M(2), building on M(1), is an adapted Bekaert and Engstrom (2017) model that

incorporates countercyclical macroeconomic uncertainty as the second state variable. Finally,

my model, labeled as M(3), overlays M(2) with procyclical dividend-consumption comovement

in the dividend growth process. Appendix Appendix C provides mathematical descriptions of

M(1) and M(2). All three models price dividend claims.

Section 4.3.1 describes the calibration of the non-DGP parameters. Then, I evaluate the

fit of the eight cyclical moments inspired by the Duffee Puzzle in Section 4.3.2 and the fit of

conventional unconditional asset moments in Section 4.3.3.

4.3.1 Calibration and simulation

Table 7 summarizes the four non-DGP parameters. The utility curvature parameter γ is

fixed at 2. As is commonly assumed in the literature, the persistence coefficient of the st process,

φs, equals the AR(1) coefficient of monthly log valuation ratio. The benchmark constant risk

free rate, rfCC , as it appears in Eq. (19), is chosen to match the average monthly real short

rate (proxied by the difference between the change in the log nominal 90-day Treasury index
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constructed by CRSP and the continuously compounded inflation rate). β is the time discount

parameter inferred from the rfCC equation.

The log valuation ratios are solved numerically using the “series method” from Wachter

(2005). M(1) is solved using a one-dimensional grid (20×1) for the one state variable: the log

surplus consumption ratio. M(2) is solved over a two-dimensional grid (20×20) for the two state

variables: the log surplus consumption ratio and macroeconomic uncertainty. The final model

M(3) uses a three-dimensional grid (20×20×20) for all three state variables. Appendix Appendix

F discusses the dependences of the valuation ratio on the three state variables in all three

models that are consistent with the analytical predictions earlier. Then, for each model, I

simulate the shocks for 100,000 months given their distributional assumptions and parameter

estimates, and construct the state variable processes accordingly. Based on the grid solutions,

I apply the piecewise polynomial cubic interpolation for M(1), and the piecewise polynomial

spline interpolation for M(2) and M(3) to obtain the log valuation ratio for each simulated

month given the state variable values. All the reported theoretical moments in this paper are

calculated using the second half of the simulated dataset.

4.3.2 The eight cyclical moments

Given that this research focuses on cyclical behavior of conditional moments, one challenge

is to identify realistic recessions in a simulated consumption-based economy. For this purpose,

I develop an algorithm based on the simulated consumption growth such that the algorithm

mimics the identification of NBER recessions that are based on patterns in GDP growth. Details

and empirical tests are provided in Appendix Appendix G.

Table 8 examines the closeness between the empirical and simulation asset moments of

Facts (a)–(h), using recession and non-recession subsamples. On fitting Facts (a)–(e), most

simulation moment point estimates of both recession and non-recession periods in M(3) are

within 95% confidence intervals of the actual data point estimates. The only exception is the

recession-period dividend growth volatility, according to row “σ(∆d) (Irece. = 1)”: due to the

non-Gaussian nature of the simulated macroeconomic uncertainty nt, extreme values are more

likely to appear during recessions, which results in an extremely volatile conditional mean of

dividend growth. However, the conditional dividend growth variance is strictly procyclical,
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according to row “σt(∆dt+1) ∼ Irece.,t” in Table 8. By design, M(3) outperforms M(1) and

M(2) on matching the joint dynamics of dividend growth and consumption growth. While M(1)

and M(2) generate recession and non-recession simulation moments that cannot be rejected by

the empirical point estimates, both models fail to fit any of the cyclicality tests of conditional

moments in Facts (a)–(e).

On fitting Facts (f) and (g), M(1) — an adapted CC model — generates recession and non-

recession volatilities of rm − ∆d and rm that are significantly lower than the empirical point

estimates. Meanwhile, M(2) and M(3), which allow for countercyclical consumption growth

uncertainty nt, improve the fit and imply more realistic magnitude. It is noteworthy that the

new comovement state variable bt in M(3) dampens the volatilities of rm − ∆d and rm. As

suggested by the analytical solution in Eq. (21), the procyclical dividend risk and comovement

risk counteract the countercyclical terms in the amount of risk. As a result, assets in M(3) are

less risky: when consumption drops during recessions, asset prices do not drop as much as those

in M(2).

On fitting Fact (h), M(1) and M(2) tend to generate non-recession valuation covariances

that are unrealistically high and rejected by data, e.g., 4.0956×10−5 in M(1) and 3.1658×10−5

in M(2) versus 1.7436×10−5 in data. The reason why M(1) generates a high valuation co-

variance despite the low price variation is that there is a high correlation (around 0.7 in my

simulation) between the price dynamics and the consumption growth innovations through the

surplus consumption ratio. This correlation decreases to around 0.25 in M(2) due to the in-

troduction of a second state variable to the price dynamics. Despite the misfit of M(2) in

matching the magnitudes, allowing for countercyclical macroeconomic uncertainty clearly gen-

erates more countercyclicality in the valuation covariance. The difference between recession and

non-recession valuation covariances is wider in M(2) than in M(1). One major improvement of

M(3) over M(2) is that both the recession and the non-recession valuation covariances are now

lower and statistically closer to the data point estimates. This is largely because of the lower

price variability shown in row (f). Therefore, M(3) fits Fact (h) in terms of both cyclicality and

magnitude.

This overlaying numerical analysis so far demonstrates that price dynamics become dif-

ferent after the introduction of the new procyclical comovement state variable in M(3). Finally,
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as shown in the last two rows in Table 8, M(3) is the only model (of the three) that simulates

point estimates of the recession and non-recession amount of consumption risk that cannot

be rejected by data. In contrast, M(1) and M(2) generate amount of consumption risk point

estimates that are significantly higher than the empirical point estimates. As a result, M(3) po-

tentially addresses the Duffee Puzzle by generating a more realistic magnitude of consumption

risk.18

To provide over-identification tests, Table 9 evaluates the fit of the three models in terms

of 17 unconditional moments including the eight puzzle moments: σ(∆c), σ(∆d), Corr(∆d,∆c),

Cov(∆d,∆c), β(∆d,∆c), σ(rm − ∆d), σ(rm), and Cov(rm − ∆d,∆c). As shown in the first

13 rows, despite the different DGP assumptions among the three overlaying models, all their

unconditional simulation moments are shown to match the data well. This result in turn sup-

ports the argument that comparing unconditional moments across various conditional models

is not an informative test and should not be used as the primary test. From the last four rows,

M(1) generates significantly smaller unconditional volatilities of rm −∆d and rm than the em-

pirical counterparts, which is expected because one of the main concerns about the original CC

model is the small pd variability. Given the single-state variable economy, M(1) also generates

unrealistically high unconditional Cov(rm−∆d,∆c) and Cov(rm,∆c) than data. On the other

hand, M(2) and M(3) are not rejected by data in terms of these four unconditional moments.

The magnitude of the unconditional return-consumption covariance in M(3), 3.1738×10−5, is

the closest to its data counterpart, 2.4822×10−5.

4.3.3 Conventional moments

Finally, Table 10 reports the fit of the models with respect to a set of conventional uncon-

ditional moments. Incorporating procyclical dividend-consumption comovement, M(3) implies

a slightly lower unconditional equity premium, 5.6524%, than M(2), 6.2414%. This is consistent

with the economic intuition mentioned in Section 4.2.3: The amount of consumption risk in

M(3) now contains procyclical immediate cash flow risk and comovement risk, resulting in a

18Note that the non-recession point estimate of return-consumption covariance using data (1.8546×10−5) is
smaller in magnitude than the recession estimate (3.3894×10−5), although both are statistically indifferent ac-
cording to the t test. The slightly higher recession-sample estimate is expected because the conditional means
of both return and consumption growth series are expected to comove more during recessions. Ideally, one can
calculate the Cov [rmt+1 − Et(rmt+1),∆ct+1 − Et(∆ct+1)] to solve this issue; however, numerical solution of such
habit formation models does not generate Et(r

m
t+1).
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less risky asset. In addition, consistent with the literature, the introduction of countercyclical

macroeconomic uncertainty increases the level of equity premium significantly, from 3.8751%

in M(1) to 6.2414% in M(2). The uncertainty state variable overall introduces additional coun-

tercyclical dynamics into the amount of risk, resulting in a riskier asset and a lower average

valuation ratio (as also shown in Table 10).

Because the procyclical comovement state variable contributes positively to the valuation

ratio, M(3) implies a valuation ratio volatility that is the highest and closest to the data point

estimate among the three models. The market return volatility implied by M(3), 14.7234%,

is slightly smaller than that implied by M(2), which can be explained analytically as follows.

Unconditional market return variance, given return linearization, can be roughly decomposed

into three components: (a) unconditional variance of a1pdt+1 − pdt, (b) unconditional variance

of ∆dt+1, and (c) unconditional covariance between a1pdt+1 − pdt and ∆dt+1. In particular,

given the law of iterated expectations, Cov(a1pdt+1 − pdt,∆dt+1) = E [Covt(pdt+1,∆dt+1)]

contains term E(A1λtb̄σ
2
c ) in M(1) and M(2) but term E(A1λtbtσ

2
c ) in M(3), and E(A1λtbtσ

2
c )

is smaller than E(A1λtb̄σ
2
c ) because of the negative correlation between λt and bt. This negative

correlation reflects the nonlinear effect of a fundamental consumption shock in asset prices,

through procyclical comovement risk and through countercyclical risk aversion simultaneously.

Section 4.2.3 discusses this unique implication of my model.

The implied Sharpe Ratio from M(3), 0.3888, is the closest to the data point estimate

because of the smaller implied equity premium. Moreover, the kurtosis moment is matched

statistically well by all three models. M(2) and M(3) generate the same risk free rate dynamics

as they differ only in the cash flow part; this average risk free rate is statistically close to the

data counterpart.

5 Conclusion

Inspired by the Duffee Puzzle, this paper aims to understand the procyclicality of the

conditional covariance between market returns and consumption growth, and to potentially

accommodate this procyclical amount of risk in a consumption-based asset pricing model. To

achieve these aims, I first show empirically that the conditional covariance between the im-

mediate cash flow part of market returns (dividend growth) and consumption growth is (1)
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procyclical and (2) a consistent source of procyclicality in the return-consumption covariance.

This is the core empirical finding of the paper. Then, I devise a new DGP that is able to si-

multaneously accommodate procyclical dividend-consumption comovement and countercyclical

consumption growth volatility. Finally, I solve a variant of the Campbell and Cochrane model

incorporating this new DGP. The approximate analytical solution suggests that the procyclical

dividend-consumption comovement, as a new state variable, entails two new procyclical terms

in the amount of consumption risk: dividend risk (via cash flows) and comovement risk (via

valuation). These procyclical terms, according to the numerical solution, play an important role

in generating a realistic magnitude of the total amount of consumption risk in a habit formation

model. Moreover, in contrast to the Campbell-Cochrane model, the conditional equity premium

no longer increases monotonically when a negative consumption shock arrives because it might

lower the dividend risk and the comovement risk while increasing the price of risk.
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Appendix A Discussions on alternative DGPs

In this appendix section, I discuss why it might be difficult to construct an alternative DGP of dividend
growth and consumption growth that jointly satisfies Facts (a)–(e). The key challenge is to imply both (1)
procyclical dividend growth variance and dividend-consumption comovement and (2) countercyclical consumption
growth variance. A one-consumption shock assumption is unattractive because the model need an extremely
procyclical exposure of dividend growth to the heteroskedastic consumption shock, which is impossible to achieve
without certain assumptions on the parameters. In Section 3, my DGP assumes two types of consumption shocks:
the fundamental shock enters the dividend growth process with a procyclical exposure, while the event shock
determines the heteroskedasticity of consumption growth. The model-implied conditional moments have the
potential to jointly satisfy the five stylized facts, as confirmed by Table 5 of Section 3.

Alternatively, one could assume a “constant” exposure of dividend growth to the fundamental consump-
tion shock — which is commonly assumed in the literature — and a “procyclical” fundamental shock conditional
variance. This way, during each period, the consumption growth disturbance is driven by a heteroskedastic Gaus-
sian shock with procyclical volatility and a heteroskedastic gamma shock with countercyclical volatility. With
proper parameter values, this model can generate procyclical dividend-consumption comovement and counter-
cyclical consumption variance. However, this alternative DGP has two potential problems. The first problem
is that the identification of consumption growth variance is likely to be difficult. The analytical expression of
the consumption growth conditional variance is now the sum of a procyclical component from the fundamental
shock and a countercyclical component from the event shock. Given that a Gaussian distribution is symmetric
and not bounded, a heteroskedastic Gaussian fundamental shock might act as the event shock trying to fit the
left-tail events in the estimation. This likely results in countercyclical volatility of fundamental shock as well.
Granted, one can restrict the fundamental shock volatility to be procyclical by restricting signs of certain param-
eters; however, it is difficult to interpret results of a constrained estimation. The second problem is that other
empirical facts might be easily violated. For instance, while the data show significant and negative correlation
(-0.2090) between the conditional variances of dividend growth and consumption growth, this alternative DGP
will generate a strictly positive correlation. This occurs because the conditional variances of consumption growth
and dividend growth now have constant and positive exposures to the conditional variance of the fundamental
consumption shock, respectively. Given these two potential problems (i.e., estimation difficulties and violation of
other empirical facts), this alternative DGP is not suitable.

Appendix B Estimation procedure for the new DGP in Section 3

Given that there is no feedback from the dividend growth process to the consumption growth process, I con-
duct a two-step estimation procedure. The first step estimates the consumption growth system. I use a filtration-
based maximum likelihood methodology in Bates (2006) to estimate the latent macroeconomic uncertainty state

variable nt and the two consumption shocks, the fundamental shock ̂̃ωc,t+1 and the event shock ̂̃ωn,t+1, where “ω̂”
indicates the estimated variables. The Bates method is particularly suitable to filter non-Gaussian shocks. Then,

the consumption growth conditional variance and its long-run average are then obtained, V̂c,t and V̂ c respectively.
The second step takes the dividend growth data ∆dt+1 and state variable and shock estimates from the first step

{V̂c,t, V̂ c, σ̂c, ̂̃ωc,t+1}. To provide estimation convenience, dividend growth is first projected onto V̂c,t − V̂ c to
obtain the estimates for {d, φd}. The rest of the dividend growth system is then estimated by maximizing the
sum of the log likelihoods of the implied cash flow-specific shock ω̃d,t+1, which follows a centered gamma density
function. The MLE estimation does not impose constraints on the non-negativity of bt estimates, but imposes one
constraint to ensure a valid gamma density function for ω̃d,t+1 at any time t; otherwise, a gamma density cannot
be defined. If ω̃d,t+1 in the data is more right-tailed and is hence bounded below, then σd will be estimated to

be positive and the constraint is as follows: −σdVd ≤ min∀t∈1,...,T

(
∆dt+1 − d̂− φ̂d(V̂c,t − V̂ c)− bt ̂̃ωc,t+1

)
. On

the other hand, if ω̃d,t+1 is more left-tailed and is hence bounded above, then σd will be estimated to be negative

with the following constraint: −σdVd ≥ max∀t∈1,...,T

(
∆dt+1 − d̂− φ̂d(V̂c,t − V̂ c)− bt ̂̃ωc,t+1

)
.

Appendix C Intermediate and final models in Section 4

In this appendix section, I provide details of the two intermediate models in the overlaying framework
and compares them with the final model of the paper, referred to as M(3). M(1) is an adapted CC model with
constant macroeconomic uncertainty and constant dividend-consumption comovement, while M(2) builds on M(1)
and allows for countercyclical macroeconomic uncertainty. The final model, M(3), allows for both countercyclical
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macroeconomic uncertainty and procyclical dividend-consumption comovement. The DGPs of the fundamentals
are as follows:

M(1): ∆ct+1 = c+ σcω̃c,t+1 + σnω̃n,t+1, (C.1)

ω̃c,t+1 ∼ N(0, 1), ω̃n,t+1 ∼ Γ(n, 1)− n,

∆dt+1 = d+ bσcω̃c,t+1 + σdω̃d,t+1, (C.2)

ω̃d,t+1 ∼ Γ(Vd, 1)− Vd,
c = 0.0025, σc = 0.0029, σn = −0.0023, n = 0.3742,

d = 0.0015, σd = 0.000123, Vd = 8933.5172, b = 0.0944;

M(2): ∆ct+1 = c+ σcω̃c,t+1 + σnω̃n,t+1, (C.3)

ω̃c,t+1 ∼ N(0, 1), ω̃n,t+1 ∼ Γ(nt, 1)− nt,
nt+1 = (1− φn)n+ φnnt + σnnω̃n,t+1, (C.4)

Vc,t = V art (∆ct+1) = σ2
c + σ2

nnt, (C.5)

V c = E (Vc,t) , (C.6)

∆dt+1 = d+ φd(Vc,t − V c) + bσcω̃c,t+1 + σdω̃d,t+1, (C.7)

ω̃d,t+1 ∼ Γ(Vd, 1)− Vd,
c = 0.0025, σc = 0.0029, σn = −0.0023, n = 0.3742, φn = 0.9500, σnn = 0.2772,

d = 0.0015, φd = −630.8768, σd = 0.000123, Vd = 8933.5172, b = 0.0944;

M(3): The new DGP in this paper (as shown in Table 5).

The log surplus consumption ratios in all three models follow an AR(1) process with time-varying sensitivities
to the consumption growth innovation. The sensitivity functions are chosen as follows:

λt =

{
1

St

√
1− 2(st − st)− 1, st ≤ smax,t

0, st > smax,t
, (C.8)

st = log(St), (C.9)

smax,t = st +
1

2
(1− S2

t ), (C.10)

M(1): St =

√
(σ2
c + σ2

nn)
γ

1− φs
, (C.11)

M(2/3): St =

√
(σ2
c + σ2

nnt)
γ

1− φs
. (C.12)

Given the sensitivity functions, the real risk free rates are time-varying with a higher moment appended to reflect
the non-Gaussian nature of the consumption event shock:

M(1): rft = − lnβ + γc+ γ(1− φs)(st − st)−
1

2
γ2(1 + λt)

2σ2
c − [γ(1 + λt)σn − ln (1 + γ(1 + λt)σn)]n

≈ − lnβ + γc+ γ(1− φs)(st − st)−
1

2
γ2(1 + λt)

2σ2
c −

1

2
γ2(1 + λt)

2σ2
nn︸ ︷︷ ︸

fix=− (1−φs)γ
2

+
1

3
γ3(1 + λt)

3σ3
nn; (C.13)

M(2/3): rft = − lnβ + γc+ γ(1− φs)(st − st)−
1

2
γ2(1 + λt)

2σ2
c − [γ(1 + λt)σn − ln (1 + γ(1 + λt)σn)]nt

≈ − lnβ + γc+ γ(1− φs)(st − st)−
1

2
γ2(1 + λt)

2σ2
c −

1

2
γ2(1 + λt)

2σ2
nnt︸ ︷︷ ︸

fix=− (1−φs)γ
2

+
1

3
γ3(1 + λt)

3σ3
nnt. (C.14)

The calibration plots of the sensitivity functions can be illustrated by fixing one state variable at a time. The
left plot depicts the relationship between λt and st, and the plot fixes at E(nt) (0.3781) and its 95th percentile
(1.4761) given the simulated nt path. The right plot depicts the relationship between λt and nt, and the plot
fixes at E(st) (-2.9008) and its 5th percentile (-3.6368). The second option, the 95th percentile of nt or 5th
percentile of st, represents an extremely bad economic environment.
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Appendix D Quadratic approximation of the moment generating func-
tion of a random variable that receives independent Gaus-
sian, χ2, and gamma shocks

Suppose a random variable x receives three independent shocks,

x = µ+ x1ω + x2(ω2 − 1) + x3(ε− α),
ω ∼ N(0, 1),
ω2 ∼ χ2(1),
ε ∼ Γ(α, 1),

(D.1)

where µ is the unconditional mean of variable x, and {x1, x2, x3} are constant coefficients. Recall the moment
generating function (MGF) is mgfω(ν) = exp(ν2/2) for a standard Gaussian shock, mgfω2(ν) = (1 − 2ν)−1/2

for a χ2 shock, and mgfε(ν) = (1 − ν)−α for a gamma shock with a unit scale parameter and shape parameter
equal to α. Therefore, the MGF of x, mgfx(ν) = E[exp(νx)], is as follows,

mgfx(ν) = exp(νµ)Et[exp(νx1ω + νx2(ω2 − 1) + νx3(ε− α))]

= exp(νµ− νx2 − νx3α)mgfω(νx1)mgfω2(νx2)mgfε(νx3)

= exp(νµ− νx2 − νx3α) exp

{
1

2
(νx1)2

}
(1− 2νx2)−1/2 (1− νx3)−α

= exp(νµ− νx2 − νx3α) exp

{
1

2
(νx1)2 − 1

2
ln (1− 2νx2)− α ln (1− νx3)

}
. (D.2)

It can be easily shown that the quadratic approximation to ln (1− z) is −z− 1
2
z2. The quadratic approximation

to mgfx(ν) yields:

mgfx(ν) ≈ exp(νµ− νx2 − νx3α) exp

{
1

2
(νx1)2 + νx2 + (νx2)2 + νx3α+

1

2
(νx3)2α

}
= exp(νµ) exp

{
1

2
(νx1)2 + (νx2)2 +

1

2
(νx3)2α

}
= exp(νE(x)) exp

{
1

2
ν2V (x)

}
. (D.3)

Define X = exp(x) and set ν = 1,

E(X) ≈ exp

{
E(x) +

1

2
V (x)

}
. (D.4)

Appendix E Approximate analytical solution of M(3)

In this appendix section, I solve the theoretical model in Section 4 with an approximate analytical solution.
There are three approximations. The first approximation conjectures the log valuation ratio pdt, pdt = A0 +
A1st + A2bt + A3b

2
t + A4nt. The second approximation applies the Campbell–Shiller linearization to the log
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market return, rmt+1 = ∆dt+1 + a1pdt+1 − pdt + a0. The log market return can be approximately expressed as a
linear function of the state variables and four independent shocks to the economy:

rmt+1 = d− φdσ2
dn+ a1

(
A0 +A1(1− φs)s+A2(1− φb)b+A3((1− φb)b)2 +A4(1− φn)n

)
−A0 + a0

+A1(a1φs − 1)st +
(
a1A2φb + 2a1A3(1− φb)bφb −A2

)
bt

+A3(a1φ
2
b − 1)b2t +

(
a1A4φn −A4 + φdσ

2
d

)
nt

+
(
a1A1λt + a1A2λb + 2a1A3(1− φb)bλb + (1 + 2a1A3φbλb)bt

)
σcω̃c,t+1

+ a1A3λ
2
b (σcω̃c,t+1)2 + a1 (A1λtσn +A4σnn) ω̃n,t+1 + σdω̃d,t+1. (E.1)

The third approximation applies quadratic approximation to the MGF of random variable mt+1 + rmt+1 using the
proof in Appendix Appendix D, given the composite shock structure. Finally, by equating the terms for the state
variables, the coefficients in the valuation ratio equation are solved:

A1 =
γ(1− φs)
1− a1φs

> 0, (E.2)

A2 =
(1 + 2a1A3φbλb)

[
γ(1 + λt)− (a1A1λt + 2a1A3(1− φb)bλb)

]
σ2
c − 2a1A3(1− φb)φbb

a1φb − 1 + a1λb(1 + 2a1A3φbλb)σ2
c

> 0. (E.3)

A3 =
−2a1φbλbσ

2
c + 1− a1φ

2
b ±

√
(2a1φbλbσ2

c − 1 + a1φ2
b)

2 − 4a2
1φ

2
bλ

2
bσ

4
c

4a2
1φ

2
bλ

2
bσ

2
c

> 0. (E.4)

A4 =
ξt ±

√
ξ2
t − 2σ2

nna
2
1

(
φdσ2

d + 1
2

(A1λta1 − γ(1 + λt))
2 σ2

n

)
σ2
nna

2
1

> 0, (E.5)

ξt = 1− φna1 − a2
1A1λtσnσnn + γ(1 + λt)a1σnσnn. (E.6)

An approximate analytical solution of equity premium is derived, given the quadratic approximation:

Et (rmt+1)− rft +
1

2
V art (rmt+1) ≈ −Covt (rmt+1,mt+1)

= γ(1 + λt)× {a1A1λtσ
2
c +

[
a1A2λb + 2a1A3(1− φb)bλb + (1 + 2a1A3φbλb)bt

]
σ2
c

+ a1

[
A1λtσ

2
n +A4σnnσn

]
nt}. (E.7)

Appendix F Dependences of the valuation ratio on b, s, and n

The three plots below depict the dependences of the valuation ratio (P/D) on the three state variables,
respectively, for all three models. M(1) is spanned by the log surplus consumption ratio state variable s only
and is depicted in solid black lines with circles; M(2) is spanned by s and the macroeconomic uncertainty state
variable n and is depicted in solid red lines with “x”; M(3) is spanned by s, n, and the comovement state variable
b and is depicted in blue lines with squares. The dimension is reduced by fixing the other state variables at
their mean values (mean of s, or E(s): -2.9008; mean of n, or E(n): 0.3781; mean of b, or E(b): 0.0942) and
critical values in a generally bad economic environment (e.g., 5th percentile in the simulated s path: -3.6368;
95th percentile in the simulated n path: 1.4761; 95th percentile in the simulated b path: 0.3932). Hence, the
lines in the following three plots can be interpreted with a conditional statement.

In the first plot below, the positive association between the valuation ratio and the comovement state
variable b confirms the analytical prediction. The M(1) and M(2) horizontal lines intersect the E(s)–E(n)

plane of M(3) at around b = 0.094, which is expected because b̂ = 0.094 according to Table 5. The convex
increasing pattern indicates that the effect of b on asset prices is stronger when the level of dividend-consumption
comovement is higher. In the present calibration, the mean (and in fact median) of the simulated bt is around
0.1 and its 95th value is 0.39.

The valuation ratio implied by M(3) at the “lower 5th s”–“E(n)” plane (s = −3.6368, n = 0.3781) lays
below the “E(s)”–“E(n)” plane (s = −2.9008, n = 0.3781), indicating a positive relationship between P/D and
s; this relationship is confirmed by the second plot below. Similarly, the valuation ratio at the “E(s)”–“higher
95th n” plane (s = −2.9008, n = 1.4761) is above the E(s)–E(n) plane, indicating a positive relationship between
PD and n; this relationship is confirmed by the third plot below. It is noteworthy that the average and 95th
percentile of the simulated nt path, 0.3781 and 1.4761, respectively, are within the lower region in the third plot
where the DR effect still dominates the traditional CF effect (see discussions in Section 4.2.1); thus, a positive
relationship between the valuation ratio and n is expected. However, the hump shape is interesting as it captures
that, under extremely high macroeconomic uncertainty (when n increases), the CF effect then dominates and
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stock prices decrease with uncertainty.
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Appendix G Identifying recessions using simulated monthly consumption

growth

In this appendix section, I develop an algorithm to identify realistic recessions based on the simulated
consumption growth rates such that the algorithm mimics the NBER recession indicator, which is based on the
quarterly GDP growth rates. Here are the steps:

1. Quarterly Growth: Aggregate the monthly consumption growth into a quarterly frequency.

2. Standardization: De-center the quarterly consumption growth by a long-term moving average (e.g., a
49-quarter moving average using 24 quarters before and after), and divide it with its long-term or uncon-
ditional standard deviation to obtain the standardized consumption growth rates.

3. Fundamental Cyclical Events: Identify the recession quarters if there are at least two consecutive stan-
dardized consumption growth drops that are <-0.9.

4. Extreme Cyclical Events: For an extreme event (standardized consumption growth <= −2), if its imme-
diate adjacent quarters before and/or after exhibit negative standardized growths, then the extreme event
and its adjacent quarter(s) are considered as recession quarters. Given the immediate adjacent quarter af-
ter (before) the extreme event, if the next (previous) quarters with consecutive standardized consumption
growth <-0.9, they are also considered recession quarters. The purpose is to capture extreme events that
typically also have a buildup before and a persistent effect after.
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5. Trough Points but with Positive Growths: Given the recessions identified in Steps 3 and 4, if there is a
recession period lasting for at least three quarters and the following quarter has a positive growth rate,
then this quarter is also considered a recession period. The reason is that positive growth rates could
be easily obtained given the low denominator from the previous period. This step avoids abrupt regime
switches which are unrealistic.

To increase the plausibility of this algorithm, I apply it to the actual consumption growth data from January
1959 to June 2014. This algorithm is able to identify seven out of the eight NBER recessions; regressing the
consumption-based recession indicator on the NBER recession indicator yields a coefficient of 0.9038 (SE=0.0507),
which is statistically close to 1; without Step 5, the regression coefficient is 0.8795 (SE=0.0558). The plot below
compares the consumption-based recessions (dashed; 1=recession, 0=non-recession) and the NBER recession
indicator (solid; -1=recession, 0=non-recession).

1959Q1 1971Q2 1983Q4 1996Q2 2008Q4
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-0.5

0

0.5

1

Algorithm
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Table 1: The conditional covariance between market returns and consumption growth.

This table presents the parameter estimates of the dynamic dependence model of market returns and
consumption growth in Panel A and how the conditional second moments vary with the business cycle in Panel
B. ∆ct+1 denotes the log consumption growth, and rmt+1 denotes the log market return. In Panel A, the
conditional variance models are described in Section 2.1.1 (see the model selection results in Table IA1 of the
Internet Appendix); the conditional correlation model is described in Section 2.1.2. In Panel B, σt(xt+1)
denotes the conditional volatility of variable xt+1; Corrt(xt+1, yt+1), the conditional correlation between

variables xt+1 and yt+1; Covt(xt+1, yt+1), the conditional covariance; βt(xt+1, yt+1) =
Covt(xt+1,yt+1)

σ2
t (yt+1)

, the

conditional beta. In the first two columns, values under “No Recession” (“Recession”) report the average
conditional moment estimates during non-recession (recession) periods. Sample averages and standard errors of
conditional covariance are scaled up by 105 for reporting purposes. The third column reports the t-statistic of
the difference between recession and non-recession estimates. The fourth column provides interpretations of
cyclicality based on the t-statistics. Standard errors are reported in parentheses; values in bold (italic) are
statistically different from zero at the 5% (10%) significance level. N=665 months (1959/02∼2014/06).

Panel A. Parameter estimates

1. Conditional variance of ∆ct+1, GED-GARCH-qt√
h̄ α β τ ν

0.00316 0.01286 0.98558 1.47078 0.04285
(fix) (0.07037) (0.07095) (0.34415) (0.00993)

2. Conditional variance of rmt+1, BEGE-GARCH-qt
hp σhp αhp βhp
0.42390 0.01948 0.01989 0.92476
(0.16461) (0.00140) (0.00496) (0.01822)

hn σhn αhn βhn ν
12.76012 0.01767 0.16076 0.80066 0.17350
(0.43306) (0.00245) (0.00802) (0.00941) (0.02737)

3. Conditional correlation between rmt+1 and ∆ct+1, DCC-qt
Q12 α12 β12 ν
0.15794 0.01713 0.94632 -0.11526
(fix) (0.01205) (0.01897) (0.03392)

Panel B. Average conditional second moments and the state of the economy

No Recession: Recession: t-statistic: Cyclicality:
(R-NoR)

σt(∆ct+1) 0.00304 0.00319 2.18 Countercyclical
(0.00002) (0.00002)

σt(r
m
t+1) 0.04062 0.05789 37.94 Countercyclical

(0.00031) (0.00082)
Corrt(r

m
t+1,∆ct+1) 0.16509 0.10994 -9.66 Procyclical

(0.00215) (0.00247)
Covt(r

m
t+1,∆ct+1)(×105) 2.03297 2.02373 -0.31 Weakly procyclical

(0.03309) (0.04704)
βt(r

m
t+1,∆ct+1) 2.26771 2.10475 -1.62 Weakly procyclical

(0.03711) (0.05589)
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Table 2: The decomposition.

This table presents the parameter estimates of the dynamic dependence model of market return components
and consumption growth in Panel A and how the conditional second moments vary with the business cycle in
Panel B. ∆dt+1 denotes the log dividend growth. In Panel A, the conditional variance models are described in
Section 2.1.1 (see the model selection results in Table IA2 of the Internet Appendix); the conditional correlation
model is described in Section 2.1.2. Other table details can be found in Table 1.

Panel A. Parameter estimates

1. Conditional variance of ∆dt+1, BEGE-hpt-GARCH-qt
hn σhn hp σhp αhp βhp ν
4.08790 0.00398 2.88375 0.00681 0.27713 0.68989 -0.20926
(0.28486) (0.00013) (0.08248) (0.00043) (0.03826) (0.02163) (0.06982)

2. Conditional variance of rmt+1 −∆dt+1, BEGE-hnt-GARCH-qt
hp σhp hn σhn αhn βhn ν
0.56790 0.02503 8.60889 0.01776 0.10984 0.83773 0.22418
(0.10152) (0.00249) (0.76218) (0.00073) (0.00228) (0.00377) (0.00947)

3. Conditional correlation between ∆dt+1 and ∆ct+1, DCC-qt
Q12 α12 β12 ν
0.01411 0.04295 0.34287 -0.18957
(fix) (0.04630) (0.16937) (0.10756)

4. Conditional correlation between rmt+1 −∆dt+1 and ∆ct+1, DCC-qt
Q12 α12 β12 ν
0.14887 0.01603 0.95239 -0.10876
(fix) (0.01066) (0.01763) (0.03278)

Panel B. Average conditional second moments and the state of the economy

No Recession: Recession: t-statistic: Cyclicality:
(R-NoR)

σt(∆dt+1) 0.01182 0.00978 -8.02 Procyclical
(0.00009) (0.00004)

Corrt(∆dt+1,∆ct+1) 0.01512 0.00689 -2.29 Procyclical
(0.00151) (0.00150)

Covt(∆dt+1,∆ct+1)(×105) 0.05084 0.01405 -2.09 Procyclical
(0.00627) (0.00501)

βt(∆dt+1,∆ct+1) 0.05751 0.01720 -1.87 Procyclical
(0.00782) (0.00500)

σt(r
m
t+1 −∆dt+1) 0.04125 0.05752 28.51 Countercyclical

(0.00020) (0.00022)
Corrt(r

m
t+1 −∆dt+1,∆ct+1) 0.15538 0.10813 -7.45 Procyclical

(0.00210) (0.00224)
Covt(r

m
t+1 −∆dt+1,∆ct+1)(×105) 1.97974 2.03712 1.65 Countercyclical

(0.03301) (0.04297)
βt(r

m
t+1 −∆dt+1,∆ct+1) 2.22032 2.20144 -0.09 Weakly procyclical

(0.03772) (0.05550)
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Table 3: Closeness tests.

This table examines the closeness between the direct and indirect empirical estimates of the three
return-consumption conditional comovement moments. In light of the identity of Eq. (1), the direct and
indirect comovement estimates are expressed as follows:

� Direct (Table 1) � Indirect (Table 2)
(1) Conditional Correlation:

Corrt(rmt+1,∆ct+1)
σt(∆dt+1)

σt(r
m
t+1)

Corrt(∆dt+1,∆ct+1) +
σt(r

m
t+1−∆dt+1)

σt(r
m
t+1)

Corrt(rmt+1 −∆dt+1,∆ct+1)

(2) Conditional Covariance:
Covt(rmt+1,∆ct+1) Covt(∆dt+1,∆ct+1) + Covt(rmt+1 −∆dt+1,∆ct+1)

(3) Conditional Beta:
βt(rmt+1,∆ct+1) βt(∆dt+1,∆ct+1) + βt(rmt+1 −∆dt+1,∆ct+1)

Panel A regresses the indirect comovement estimates on the direct ones, which constitutes a correlation test.
The coefficient estimate, its 95% confidence interval, and the test result interpretation are reported in the three
columns, respectively; under the null, the projection coefficient is statistically close to 1. Panel B tests whether
sample moments are statistically close using the direct and the indirect comovement estimates; *** (**)
indicates that the sample moment calculated using the direct estimates is within 1.645 (1.96) standard
deviations of that calculated using the indirect estimates. In both panels, standard errors are reported in
parentheses; in particular, standard errors in Panel B are bootstrapped standard errors (for 1000 times); values
in bold (italic) are statistically different from zero at the 5% (10%) significance level. N=665 months
(1959/02∼2014/06).

Panel A. Closeness test by projections

Coef. 95% Confidence Interval Result
Conditional correlation 0.9761 [0.9521, 1.0001] Fail to reject

(0.0122)
Conditional covariance 0.9825 [0.9608, 1.0041] Fail to reject

(0.0110)
Conditional beta 1.0138 [0.9922, 1.0353] Fail to reject

(0.0110)

Panel B. Closeness test by sample moments

Mean Standard Deviation Scaled Skewness
Indirect Direct Indirect Direct Indirect Direct

Conditional correlation 0.1570 0.1565*** 0.0599 0.0596*** 0.0231 -0.1041**
(0.0023) (0.0015) (0.0739)

Conditional covariance 2.0375 2.0317*** 0.9147 0.9110*** 0.3539 0.2011**
(0.0355) (0.0226) (0.0845)

Conditional beta 2.2692 2.2449*** 1.0797 1.0384*** 0.9694 0.9147***
(0.0417) (0.0363) (0.0938)
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Table 4: Seven extant consumption-based asset pricing models.

This table summarizes the abilities of seven well-cited variants of habit-formation (Habit) and long-run risk
(LRR) models in the consumption-based asset pricing literature to fit the eight stylized facts established in
Section 2: (1) CC1999: Campbell and Cochrane (1999, JPE); (2) BEX2009: Bekaert, Engstrom, and Xing
(2009, JFE); (3) BE2017: Bekaert and Engstrom (2017, JPE); (4) BY2004: Bansal and Yaron (2004, JF); (5)
BTZ2009: Bollerslev, Tauchen, and Zhou (2009, RFS); (6) BKY2012: Bansal, Kiku, and Yaron (2012, CFR);
(7) SSY2015: Segal, Shaliastovich, and Yaron (2015, JFE). Column “Data” refers to the stylized facts presented
in Tables 1 and 2. “Const.” indicates that the moment is constant; “Counter-,” countercyclical; and “Pro-,”
procyclical. Note that the cyclicality of a conditional moment in all these models can be analytically identified
given the sign of its correlation with consumption growth within the model (i.e., the only macro variable).

(1) (2) (3) (4) (5) (6) (7)
Data CC1999 BEX2009 BE2017 BY2004 BTZ2009 BKY2012 SSY2015

Habit Habit Habit LRR LRR LRR LRR

(a) V art(∆ct+1) Counter- Const. Counter- Counter- Counter- (~) Counter- (~) Counter- (~) Counter- (~)
(b) V art(∆dt+1) Pro- Const. Counter- Counter- Counter- (~) Counter- (~) Counter- (~) Const.
(c) Corrt(∆dt+1,∆ct+1) Pro- 0.2 Const. Unclear 0 1 Const. 0
(d) Covt(∆dt+1,∆ct+1) Pro- Const. Counter- Counter- 0 Counter- (~) Counter- (~) 0
(e) βt(∆dt+1,∆ct+1) Pro- Const. Const. Pro- (∗) 0 Const. Const. 0
(f) V art(r

m
t+1 −∆dt+1) Counter- Counter- Counter- Counter- Counter- (~) Counter- (~) Counter- (~) Counter- (~)

(g) V art(r
m
t+1) Counter- Counter- Counter- Counter- Counter- (~) Counter- (~) Counter- (~) Counter- (~)

(h) Covt(r
m
t+1 −∆dt+1,∆ct+1) Counter- Counter- Counter- Counter- 0 0 0 Counter- (~)

(Duffee). Covt (rmt+1,∆ct+1) Pro- Counter- Counter- Counter- 0 Counter- (~) Counter- (~) Counter- (~)

(∗) Procyclical when the scale parameter of bad uncertainty shock in the total consumption shock (σcn) is
greater than the scale parameter of bad uncertainty in dividend (σdn) in BE2017.
(~) Countercyclical when the time-varying consumption volatility is modeled to be countercyclical; note that
the time-varying volatility is a crucial feature of LRR models; however, the LRR models do not imply
countercyclical volatility because the volatility shock and the consumption shock are assumed uncorrelated.
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Table 5: The new DGP for the joint dividend-consumption dynamics.

Consumption growth and dividend growth have the following joint dynamics:

∆ct+1 = c+ σcω̃c,t+1 + σnω̃n,t+1,

nt+1 = (1− φn)n+ φnnt + σnnω̃n,t+1,

∆dt+1 = d+ φd
(
Vc,t − V c

)
+ btσcω̃c,t+1 + σdω̃d,t+1,

bt+1 = (1− φb)b+ φbbt + λbσcω̃c,t+1,

Vc,t = σ2
c + σ2

nnt,

V c = σ2
c + σ2

nn,

where the fundamental shock ω̃c,t+1 ∼ N(0, 1), the event shock ω̃n,t+1 ∼ Γ(nt, 1)− nt, and the dividend-specific
shock ω̃d,t+1 ∼ Γ(Vd, 1)− Vd. The DGP estimation adopts a two-step procedure and uses the AR(3)-centered
consumption growth and the original dividend growth as ∆ct+1 and ∆dt+1 (see details in Appendix Appendix
B). Panels A and B present the estimation results. Panel C reports the cyclicality tests; rows “b(INBER,t)”
report the regression coefficients of a state variable or an implied conditional second moment on the NBER
recession indicator. Standard errors are shown in parentheses. Values in bold (italic) are statistically different
from zero at the 5% (10%) significance level. N=665 months (1959/02∼2014/06).

Panel A. Estimation results, consumption Panel B. Estimation results, dividend
∆ct+1 nt+1 ∆dt+1 bt+1

c̄ 0.0025 n̄ 0.3742 d̄ 0.0015 b̄ 0.0944
(0.0001) (0.1609) (0.0004) (0.1612)

σc 0.0029 φn 0.9500 φd -630.8768 φb 0.3159
(0.0001) (0.0264) (225.7119) (0.1561)

σn -0.0023 σnn 0.2772 σd 1.23E-04 λb 59.9163
(0.0005) (0.1027) (3.36E-06) (5.4008)

Vd 8933.5172
(488.4230)

Panel C. Confirming the cyclicalities
State Variables Fact (a) Fact (b)
nt+1 bt+1 σt(∆ct+1) σt(∆dt+1)

b(INBER,t) 0.5926 -0.1240 4.28E-04 -4.35E-06
(0.0354) (0.0190) (2.68E-05) (2.59E-06)

Fact (c) Fact (d) (×105) Fact (e)
Corrt(∆dt+1,∆ct+1) Covt(∆dt+1,∆ct+1) βt(∆dt+1,∆ct+1)

b(INBER,t) -0.0282 -0.1033 -0.1041
(0.0042) (0.0159) (0.0155)
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Table 6: Properties of the filtered DGP shocks.

This table presents statistical properties of the three filtered DGP shocks. Panel A reports the correlation
between the monthly and quarterly shocks and business cycle indicators. Monthly shocks are obtained from the
estimation, quarterly shocks are obtained using the sum of monthly shocks within the quarter, and business
cycle indicators include the NBER recession indicator and the detrended ĉay variable from Lettau and
Ludvigson (2001). Panel B presents the summary statistics of the three filtered monthly shocks. Bootstrapped
standard errors are reported in parentheses in both panels. Values in bold (italic) are statistically different from
zero at the 5% (10%) significance level. N=665 months (1959/02∼2014/06).

Panel A. Correlation w/ the business cycle Panel B. Summary statistics, monthly
ω̃c ω̃n ω̃d ω̃c ω̃n ω̃d

NBER, monthly -0.18 0.13 -0.11 Mean 1.71E-03 2.42E-03 1.66E-04
(0.04) (0.04) (0.04) (0.04) (0.02) (3.62)

Standard Deviation 0.97 0.44 94.47

ω̃Qc ω̃Qn ω̃Qd (0.03) (0.06) (3.87)
NBER, quarterly -0.27 0.25 -0.23 Scaled Skewness 0.18 5.44 0.19

(0.07) (0.07) (0.07) (0.13) (0.57) (0.25)
ĉay, quarterly -0.22 0.06 0.01 Excess Kurtosis 0.45 40.52 2.70

(0.06) (0.06) (0.07) (0.50) (8.38) (0.56)

Table 7: Non-DGP model parameter choices (∗=annualized).

This table presents the non-DGP parameter choices and the derived parameter values. The AR(1) coefficient of
st, φs, is obtained from the AR(1) coefficient of the monthly log valuation ratio; rfCC is the constant
benchmark risk free rate and is chosen to match the average real 90-day Treasury bill rate, which is proxied by
changes in the log nominal 90-day Treasury index (source: CRSP) minus inflation rate (source: FRED)
continuously compounded; β is the time discount parameter derived from the rfCC equation. Monthly data
covers the period 1959/01∼2014/06.

1. Non-DGP parameters: Notation Value
Curvature parameter γ 2

∗ st persistence φs 0.9236
∗ Risk free rate (%) rfCC 1.4854

2. Derived parameters:
∗ Discount rate β 0.9694

Steady-state surplus consumption ratio, M(1) S̄ 0.0559
Maximum log surplus consumption ratio, M(1) smax -2.3863
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Table 8: Theoretical models: cyclical moments.

This table evaluates the abilities of three overlaying theoretical models to fit Facts (a)–(h) and the Duffee
Puzzle. These empirical facts are established in Section 2. Empirical Moments: Column “Data” presents
three empirical benchmarks of each fact: (1) unconditional moments using data during non-recessions
(INBER = 0) and (2) recessions (INBER = 1), and (3) a regression coefficient of the DGP-implied conditional
moments on the NBER recession indicator. Bootstrapped and OLS standard errors are shown in parentheses
under Column “SE.” The significance of testing whether the recession/non-recession sample moments is
indicated next to the non-recession moment; the significance of the regression coefficient of the conditional
moments is also shown. ***p < 0.01, **p < 0.05,*p < 0.1. Model moments: The counterparts using the
simulated datasets of the three theoretical models are shown under Columns “M(1)”, “M(2)” and “M(3)”. The
models are solved numerically using the “series method” introduced in Wachter (2005), and are simulated for
100,000 months; see details on calibration in Section 4.3.1. All model-implied moments in this paper are
calculated using the second half of a simulated dataset, i.e., 50,001-100,000. The algorithm for identifying
recession periods is described in Appendix Appendix G. Symbols: σ (σt), volatility (conditional volatility);
Cov (Covt), covariance (conditional covariance); Corr (Corrt), correlation (conditional correlation); β (βt),
beta (conditional beta). Performance: Bold (italic) values indicate that the simulation moment point
estimates are within a 95% (99%) confidence interval of the empirical moments; “-” indicates that the
model-implied conditional moment is constant and insensitive to a recession indicator, e.g.,
Covt(∆dt+1,∆ct+1) = b̄σ2

c in M(2).

Data SE M(1) M(2) M(3)
Adapted Adapted
Campbell & Bekaert & This Paper
Cochrane, 1999 Engstrom, 2017

s as State Variable - - Yes Yes Yes
n as State Variable - - No Yes Yes
b as State Variable - - No No Yes

(a) σ(∆c) (Irece. = 0) 0.0031* (0.0001) 0.0032 0.0032 0.0032
σ(∆c) (Irece. = 1) 0.0036 (0.0002) 0.0032 0.0035 0.0035
σt(∆ct+1) ∼ Irece.,t 4.28E-04*** (2.68E-05) - 2.47E-04 2.47E-04

(b) σ(∆d) (Irece. = 0) 0.0118*** (0.0005) 0.01158 0.01173 0.01174
σ(∆d) (Irece. = 1) 0.0092 (0.0008) 0.01177 0.01214 0.01218
σt(∆dt+1) ∼ Irece.,t -4.35E-06* (2.59E-06) - - -4.00E-06

(c) Corr(∆d,∆c) (Irece. = 0) 0.0303 (0.0388) 0.0223 0.0208 0.0218
Corr(∆d,∆c) (Irece. = 1) -0.0013 (0.0388) 0.0223 0.0203 0.0054
Corrt(∆dt+1,∆ct+1) ∼ Irece.,t -0.0282*** (0.0042) - -0.0012 -0.0348

(d) Cov(∆d,∆c) (Irece. = 0) (×105) 0.1110 (0.1424) 0.0818 0.0770 0.0809
Cov(∆d,∆c) (Irece. = 1) (×105) -0.0044 (0.1286) 0.0843 0.0868 0.0232
Covt(∆dt+1,∆ct+1) ∼ Irece.,t (×105) -0.1033*** (0.0159) - - -0.1242

(e) β(∆d,∆c) (Irece. = 0) 0.1155 (0.1482) 0.0817 0.0770 0.0810
β(∆d,∆c) (Irece. = 1) -0.0034 (0.1003) 0.0815 0.0700 0.0187
βt(∆dt+1,∆ct+1) ∼ Irece.,t -0.1041*** (0.0155) - -0.0075 -0.1319

(f) σ(rm −∆d) (Irece. = 0) 0.0413*** (0.0020) 0.0146 0.0423 0.0419
σ(rm −∆d) (Irece. = 1) 0.0665 (0.0066) 0.0138 0.0537 0.0509

(g) σ(rm) (Irece. = 0) 0.0400*** (0.0020) 0.0188 0.0423 0.0420
σ(rm) (Irece. = 1) 0.0652 (0.0061) 0.0183 0.0539 0.0485

(h) Cov(rm −∆d,∆c) (Irece. = 0) (×105) 1.7436* (0.4925) 4.0956 3.1658 2.9983
Cov(rm −∆d,∆c) (Irece. = 1) (×105) 3.3938 (0.9146) 4.1321 3.9563 3.8239

(Duffee) Cov(rm,∆c) (Irece. = 0) (×105) 1.8546 (0.4767) 4.1775 3.2428 3.0792
Cov(rm,∆c) (Irece. = 1) (×105) 3.3894 (0.8966) 4.2165 4.0431 3.8470
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Table 9: Theoretical models: unconditional moments.

This table presents 17 unconditional moments from empirical and simulated datasets. Details on data, models,
and simulations are described in Table 8. Bootstrapped standard errors are shown in parentheses. Bold (italic)
values indicate that the simulation moment point estimates are within a 95% (99%) confidence interval of the
empirical moments.

Data SE M(1) M(2) M(3)
Adapted Adapted
Campbell & Bekaert & This Paper
Cochrane, 1999 Engstrom, 2017

s as State Variable - - Yes Yes Yes
n as State Variable - - No Yes Yes
b as State Variable - - No No Yes

E(∆c) 0.0025 (0.0001) 0.0025 0.0025 0.0025
σ(∆c) 0.0032 (0.0001) 0.0032 0.0032 0.0032
Skew(∆c) -0.1292 (0.1419) -0.2658 -0.2707 -0.2707
xKurt(∆c) 0.7779 (0.3553) 0.5342 0.8354 0.8354
Heteroskedastic ∆c Innovations Yes No Yes Yes
E(∆d) 0.0015 (0.0005) 0.0015 0.0015 0.0015
σ(∆d) 0.0116 (0.0005) 0.0116 0.0117 0.0118
Skew(∆d) 0.2268 (0.2478) 0.0285 0.0117 0.0122
xKurt(∆d) 2.7560 (0.5656) -0.0152 -0.0052 -0.0060
Heteroskedastic ∆d Innovations Yes No No Yes
Corr(∆dt+1,∆ct+1) 0.0569 (0.0343) 0.0224 0.0225 0.0225
Cov(∆dt+1,∆ct+1)(×105) 0.2140 (0.1341) 0.0831 0.0847 0.0849
β(∆dt+1,∆ct+1) 0.2052 (0.1278) 0.0812 0.0824 0.0825
σ(rm −∆d) 0.0458 (0.0019) 0.0147 0.0428 0.0421
σ(rm) 0.0448 (0.0019) 0.0189 0.0427 0.0422
Cov(rm −∆d,∆c) (×105) 2.2682 (0.5574) 4.1826 3.2568 3.0889
Cov(rm,∆c) (×105) 2.4822 (0.5624) 4.2657 3.3416 3.1738

Table 10: Theoretical models: conventional asset price statistics (∗=annualized).

This table presents ten unconditional moments of asset prices from actual and simulated datasets. Bold (italic)
values indicate that the simulation moment point estimates are within a 95% (99%) confidence interval of the
empirical moments.

Data SE M(1) M(2) M(3)
Adapted Adapted
Campbell & Bekaert & This Paper
Cochrane, 1999 Engstrom, 2017

s as State Variable - - Yes Yes Yes
n as State Variable - - No Yes Yes
b as State Variable - - No No Yes

∗ E(rm − rf),% 4.7964 (2.0829) 3.8751 6.2414 5.6524
∗ σ(rm − rf),% 15.4516 (0.6197) 6.4629 14.9684 14.7234

exp [E(pd)] 35.992 (0.5461) 25.8418 17.2668 17.5131
σ(pd) 0.3847 (0.0895) 0.1090 0.2429 0.2594

∗ ac(pd) 0.9236 (0.0557) 0.9063 0.8751 0.8757
Sharpe Ratio 0.3276 (0.1501) 0.5992 0.4236 0.3888
Scaled Skewness -0.7932 (0.2592) 0.1515 -0.1816 -0.1453
Excess Kurtosis 2.6386 (1.2713) 0.3318 0.5579 0.4870

∗ E(rf),% 1.4854 (0.1525) 1.1159 1.3608 1.3608
∗ σ(rf),% 0.9895 (0.0428) 0.0348 0.0450 0.0450
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Figure 1: Empirical model: the conditional comovement between market returns and consump-
tion growth.

The figure depicts the dynamics of the estimated return-consumption conditional correlation
Corrt(r

m
t+1,∆ct+1) (top), conditional covariance Covt(r

m
t+1,∆ct+1) (middle), and conditional beta

βt(r
m
t+1,∆ct+1) (bottom); estimation details are reported in Table 1. In the second and third plots, the

spike around 1987 corresponds to the stock market Black Monday in October 1987, which caused
extreme price movements. The shaded regions are the NBER recession months from the NBER website.
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Figure 2: Empirical model: the decomposition In the correlation space.

In light of the following identity,

Corrt(r
m
t+1,∆ct+1) =

σt(∆dt+1)

σt(rmt+1)
Corrt(∆dt+1,∆ct+1) +

σt(r
m
t+1 −∆dt+1)

σt(rmt+1)
Corrt(r

m
t+1 −∆dt+1,∆ct+1),

this figure shows the dynamics of the immediate cash flow component (in solid blue) of the total

return-consumption conditional correlation, σt(∆dt+1)
σt(rmt+1) Corrt(∆dt+1,∆ct+1), and the remaining non-cash

flow component (in dashed red), Corrt(r
m
t+1,∆ct+1)− σt(∆dt+1)

σt(rmt+1) Corrt(∆dt+1,∆ct+1). The total market

return correlation estimates are depicted in Fig. 1. The non-cash flow component depicted in this plot
uses the difference between the return conditional correlation and its immediate cash flow component;
Figure IA2 of the Internet Appendix compares this indirect non-cash flow measure with a direct
measure, and they are correlated at 0.99. This figure and Section 2.3.3 discuss the decomposition in the
correlation space for interpretation and illustration purposes. Figure IA3 of the Internet Appendix
presents this decomposition in the covariance space. The shaded regions are the NBER recession
months from the NBER website.
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Figure 3: DGP: state variables.

In both plots, gray lines depict the monthly estimates of the latent state variables, and the overlaying
black lines depict their three-month moving averages. The countercyclical macroeconomic uncertainty
state variable nt (top) is estimated from a filtration-based maximum likelihood estimation methodology
developed by Bates (2006), and the procyclical dividend-consumption comovement state variable bt
(bottom) is estimated using MLE; detailed estimation procedure is provided in Appendix Appendix B;
detailed estimation results are shown in Table 5. The monthly nt (bt) estimates exhibit a significant
correlation of 0.545 (-0.245) with the NBER recession indicator. The augmented Dickey-Fuller test
statistic of the monthly nt (bt) estimates rejects the unit root null hypothesis with a test statistic of
-4.298 (-18.775). The shaded regions are the NBER recession months from the NBER website.
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The monthly -ltered fundamental shock realizations summarized at the quarterly frequency. 
The de-trended consumption-wealth ratio from Lettau and Ludvigson (2001).
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The monthly -ltered event shock realizations summarized at the quarterly frequency.

Figure 4: DGP: economic interpretations of consumption shocks.

This figure provides graphical evidence for potential economic interpretations of the filtered
fundamental and event consumption shocks. The top plot provides a quarter-to-quarter comparison
between the fundamental shock (in solid black; left axis) and the de-trended consumption-wealth ratio
(in dashed blue; right axis) from Lettau and Ludvigson (2001), or ĉay; their correlation is significant
and negative (-0.22). The bottom plot depicts the quarterly event shock realizations; its correlation
with the NBER recession indicator is significant and positive (0.25). The shaded regions are the NBER
recession quarters from the NBER website.
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