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Abstract
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for countries with high financial exposure.
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1. Introduction

Contributing to extensive discussions on how global shocks transmit across inter-

national equity markets (see, e.g., Colacito, Croce, Gavazzoni, and Ready (2018)), we

propose a new approach to examine which, and to what extent, common risk variables

drive equity risk premiums (EPs) across countries at short (within one year) horizons.

The main intuition of our analysis is that international stock return predictability should

be driven by fundamental determinants that are common to global predictors and global

EPs. By observing the predictability relations and the dynamics of global predictors, we

can infer the relative importance of these common determinants in driving global equity

risk compensations at various horizons.

In this paper, we formalize this intuition by linking novel empirical evidence for

the ability of U.S. downside and upside variance risk premiums (DVPs and UVPs, re-

spectively) to predict international stock returns with implications from an empirical

model featuring time-varying and asymmetric (good and bad) U.S. economic uncertainty

and risk aversion as common risk premium determinants. We find that 60% to 80% of

the dynamics of the global EP for horizons under seven months are driven by economic

uncertainty, while risk aversion appears more relevant for longer horizons. Both good

and bad economic uncertainties contribute positively to the global EP, with the latter

effect being more persistent and becoming dominant after four months. Our approach

also allows us to systematically study the drivers of cross-country variations in global

risk compensations. We find that in countries with higher economic exposure, investors

demand higher compensation for bad economic uncertainty and lower compensation for

good economic uncertainty; in countries with high financial exposure, they demand lower

compensation for bad economic uncertainty.

For our empirical evidence, we consider the U.S. variance risk premium’s (VP)

downside and upside components as our two main global predictors, aiming to maximally

infer information about short-horizon global equity risk compensations in light of the

recent evidence in Kilic and Shaliastovich (2019) and Feunou, Jahan-Parvar, and Okou

(2017). Our sample spans from April 1991 to December 2019. We calculate DVP and

UVP as the difference between the risk-neutral and physical expectations of one-month-

ahead stock return variance, conditional on whether the one-month-ahead stock price

is below (bad states) or above (good states) the current stock price, respectively. We

approximate the risk-neutral expectation of the downside (upside) stock return variance

using puts (calls) on the S&P 500 index at different strikes and maturities. We obtain

the physical expectation for the downside (upside) stock variation using the best forecast

of the downside (upside) realized variance in a set of forecasting models. We find that

DVP and UVP behave quite differently. In particular, the total VP and its downside

component are highly correlated, significantly positive, and countercyclical, with large
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positive spikes around key episodes of market stress and economic turmoil. In contrast,

UVP is positive but smaller in magnitude, less persistent, and procyclical, with occasional

negative spikes, some of which coincide with major positive DVP spikes.

We then document the predictive power of DVP and UVP for the excess returns

of 22 countries’ headline stock indexes expressed in U.S. dollars. We find evidence that

decomposing the U.S. VP into its asymmetric components yields gains in predicting

international stock returns. In addition, the predictability patterns of DVP and UVP

are considerably different along several dimensions. In particular, the international stock

return predictability is mainly explained by UVP at very short horizons and by DVP at

horizons between four and seven months. Moreover, the predictive power of DVP follows

a hump-shaped pattern, peaking at mid four- to seven-month horizons, while that of UVP

follows a decreasing pattern after peaking at the one-month horizon.

There are variations in predictability patterns across countries, and we explore

to what extent these variations are explained by country-level economic and financial

exposure to global risks. Economic exposure is proxied by the ratio of a country’s total

international trade to its GDP, and financial exposure is proxied by the ratio of a country’s

total international asset and liability holdings to its GDP. We find that countries with

higher economic (financial) exposure exhibit higher (lower) DVP coefficients, while the

UVP coefficients significantly decrease with the economic exposure.

The second part of the paper formalizes the main intuition of our exercise using an

empirical model wherein the VP components and international EPs are all linear func-

tions of common risk premium determinants, and this function depends on current eco-

nomic conditions. Our model can be motivated from a consumption-based asset-pricing

framework where variance risk is priced. In such a framework, the dynamics of VP and

international EPs should be driven by the second moments of kernel shocks, which we

refer to as “common risk premium determinants.” We assume that kernel disturbances

come from asymmetric non-Gaussian shocks to the real growth process or the risk prefer-

ence process. This assumption about the nature of kernel disturbances is consistent with

extant findings that macroeconomic uncertainty and investors’ attitudes toward risk play

a prominent role in explaining the variance risk premium (including rare disasters in, e.g.,

Gabaix (2012); long-run risk models in, e.g., Bollerslev, Tauchen, and Zhou (2009); mod-

els with habit formation and bad environment-good environment dynamics, as in Bekaert

and Engstrom (2017); and models with time-varying fear in, e.g., Drechsler (2013)). The

global component of international EPs should reflect compensations for exposure to these

kernel shocks. Intuitively, global shocks are capitalized in stock prices differently across

countries as a result of heterogeneous exposure to these common shocks given a global

representative investor. Because we observe the relation between VPs and international

EPs through the predictability results, we can infer the relative importance of these com-

mon economic determinants in driving global equity risk compensations, which is the key
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estimation strategy of the paper.

Bringing the empirical model to the data we find that, under normal economic cycle

conditions, 62% of DVP variability is explained by risk aversion and 39% by bad eco-

nomic uncertainty. Under volatile economic conditions, DVP becomes less sensitive to

bad economic uncertainty, which is consistent with recent evidence on the time-varying

disconnect between macro conditions and asset prices (see, e.g., Smith and Timmermann

(2021) and Xu and You (2022)). UVP, on the other hand, increases with procyclical

good economic uncertainty through the hedging demand of upside risk, as well as coun-

tercyclical risk aversion through the general hedging demand for variance risk. These two

channels counteract, resulting in a relatively less persistent and smaller UVP than DVP.

We identify the relative importance of common economic determinants in inter-

national EPs by exploiting the cross section of country-level predictive coefficients. To

characterize differences across countries, we consider measures of economic and financial

exposure to global shocks, as motivated by our empirical evidence. We first make infer-

ences for an average country, which is a country with a median level of economic and

financial exposure. We find that the global EP’s sensitivity to the common risk premium

determinants changes over the horizon. Economic uncertainties explain 60% to 80% of

the global risk premium variability at horizons under seven months, with bad uncer-

tainty dominating after four months, while risk aversion has a stable and positive effect

for all horizons. Both good and bad U.S. economic uncertainties contribute positively

to the global EP, which is consistent with the domestic (U.S.) implications from Segal,

Shaliastovich, and Yaron (2015).

We complement the analysis for the average country by calibrating four country

groups with low and high economic and financial exposure. We find that global investors

demand higher compensation for bad economic uncertainty (e.g., volatility caused by tail

risk) and lower compensation for good economic uncertainty (e.g., volatility caused by

growth spurts) in countries with higher economic exposure. Meanwhile, global investors

demand lower compensation for bad economic uncertainty in countries with higher fi-

nancial exposure; this finding is potentially consistent with the international risk sharing

intuition, given lower cost of capital, greater firm and fundamental investment opportu-

nities, and higher potential cash flow growth (e.g., Bekaert and Harvey (2003); Carrieri,

Errunza, and Hogan (2007)).

Related literature

Our research contributes to several strands of the literature. First, our exploration

of the global determinants of international EPs contributes to the ongoing discussion of

how global shocks matter and transmit across international equity markets (see, e.g.,

Colacito, Croce, Gavazzoni, and Ready (2018); Bonciani and Ricci (2020); Bekaert, Ho-

3



erova, and Xu (2020); Avdjiev, Gambacorta, Goldberg, and Schiaffi (2020); Aldasoro,

Avdjiev, Borio, and Disyatat (2020); Xu (2019)). Unlike existing research, our frame-

work exploits empirical evidence from international stock return predictability patterns,

which allows us to look at global risk compensations using cross-sectional information at

various horizons.

Our research joins the literature on understanding and estimating the dynamics of

EPs, where researchers have used asset pricing models (as in Croce, Lettau, and Ludvig-

son (2015), Stathopoulos (2017), Martin (2017) and Bekaert, Engstrom, and Xu (2022)),

surveys (as in Graham and Harvey (2005)), and novel data sets, such as dividend futures

and dividend strips (as in Van Binsbergen, Brandt, and Koijen (2012) and Van Binsber-

gen, Hueskes, Koijen, and Vrugt (2013)). Our model estimation strategy features two

innovations. First, in an asset pricing framework, both U.S. VP and international EPs

should be driven by common risk premium state variables. Empirically, we observe their

covariance relationship (i.e., predictability results) and the dynamics of the VP compo-

nents. By predetermining the loadings of the VP components on these premium state

variables, we can estimate the loadings of international EPs. Second, we are among the

first to attempt incorporating multiple predictors and, in particular, multiple countries

in a unified estimation framework.

Considering the U.S. VP and its asymmetric components as our main global predic-

tors also contributes to the literature on international stock return predictability. Broadly,

we add to a branch of the literature that investigates the predictive power of U.S. financial

variables for international stock returns (see Rapach, Strauss, and Zhou (2013) and papers

cited therein). More specifically, we add to the literature documenting the robust ability

of the U.S. VP to predict international stock returns (Londono (2015) and Bollerslev,

Marrone, Xu, and Zhou (2014)). A more recent strand of the VP predictability litera-

ture finds that compensations for bearing stock return variations associated with good

and bad states are potentially different and that acknowledging asymmetry in the VP

significantly increases its stock return predictability. This literature has focused only on

VP’s ability to predict U.S. stock returns (Kilic and Shaliastovich (2019), Feunou, Jahan-

Parvar, and Okou (2017), and Feunou, Aliouchkin, Tédongap, and Xu (2020)). Given our

goal to improve our understanding of global equity risk compensations through predictive

coefficients, we contribute to this strand of the literature by showing that decomposing

the U.S. VP into its downside and upside components also yields higher predictability

for international stock returns.

Moreover, there is scant literature on the drivers of cross-country variation in pre-

dictability patterns. We explore the role of financial and economic exposure to global

risks in explaining these variations. Importantly, our cross-country calibration suggests

that global investors may demand more compensation for bad global economic uncer-

tainty in countries with higher economic exposure but lower financial exposure, shedding
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light on the non-trivial asset pricing implications of globalization (see, e.g., Kose, Prasad,

Rogoff, and Wei (2009); Rapach, Strauss, and Zhou (2013); and Bekaert, Harvey, Kiguel,

and Wang (2016)).

The remainder of the paper is organized as follows. Section 2 provides the empirical

evidence for the dynamics and international stock return predictability of U.S. DVP and

UVP. In Section 3, we introduce our empirical model and choices for the risk premium

determinants. Section 4 presents the data and estimation methodology, and Section 5

discusses the main findings on the relative importance of these economic determinants in

international EPs. Concluding remarks are included in Section 6.

2. Empirical Evidence

In this section, we explore the commonalities in short-term international EPs by

examining the predictive power of the U.S. VP and its downside and upside components

for international stock excess returns. In Sections 2.1 and 2.2, we construct and discuss the

dynamic properties of the downside and upside components of the U.S. VP. We examine

their predictive power for international stock excess returns and cross-country variations

in international predictability patterns in Section 2.3. In Section 2.4, we construct global

VP components and assess their predictive power to assess the robustness of our results

using the U.S. VP components.

2.1. Definitions

We follow the notation in Bollerslev, Tauchen, and Zhou (2009) and define the total

one-month-ahead VP as the difference between the risk-neutral (Q) and the physical (P )

expectations of the total variance of one-month-ahead stock returns,

V Pt,t+1 = V Q
t (rt+1)− V P

t (rt+1), (1)

where rt+1 denotes the log stock return between months t and t+ 1. We decompose VP

into its downside and upside components, which we label DVP and UVP, respectively.

These components allow us to disentangle the compensations for bearing downside and

upside variance risks. The general expression for this decomposition is

V Pt,t+1 = V Q
t (rt+11<0)− V P

t (rt+11<0)︸ ︷︷ ︸
DV P

+V Q
t (rt+11>0)− V P

t (rt+11>0)︸ ︷︷ ︸
UV P

, (2)

where 1<0 (1>0) is a dummy equal to 1 when the one-month-ahead return is below (above)

0 (see Feunou, Jahan-Parvar, and Okou (2017); Kilic and Shaliastovich (2019); and Held,

Kapraun, Omachel, and Thimme (2020)).

We estimate the risk-neutral and physical components of DVP and UVP separately.

The risk-neutral components of DVP and UVP are extracted from option prices (see,

e.g., Britten-Jones and Neuberger (2000) and Andersen and Bondarenko (2009)) using
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the option-implied downside and upside variances, respectively, as follows:

ivDt,t+1 =

(∫ St

0

2(1 + log(St/K)

K2
P (t+ 1, K)dK

)2

, (3)

ivUt,t+1 =

(∫ ∞
St

2(1− log(K/St)

K2
C(t+ 1, K)dK

)2

,

where St is the current stock index price and P (K) (C(K)) is the price of a put (call) with

strike K and a one-month maturity. Intuitively, the option-implied downside (upside)

variance is identified by put (call) options that pay off when the return realization is

negative (positive). Next, we approximate the physical components of DVP and UVP

using the expected values of one-month-ahead downside and upside realized variances,

respectively. Intuitively, we separate the return variability due to intradaily negative and

positive price movements, and the realized semivariances are obtained as follows:

rvDt+1 =
N∑
τ=1

r2τ1rτ<0, (4)

rvUt+1 =
N∑
τ=1

r2τ1rτ>0,

where rτ represents the instantaneous return calculated using stock prices sampled at

intradaily frequencies between months t and t + 1 and N is the total number of high-

frequency return observations within the month. The physical expectations of downside

and upside realized variances are obtained using linear projections, as follows:

Et(rv
i
t+1) = α̂i + γ̂iGi

t, (5)

where i = D (downside) or U (upside) and Gi
t is a chosen set of predictors observable at

time t. We allow Gi
t to be different in predicting downside and upside realized variances

and let the data decide the best predictive model for each VP component. Therefore,

DVP and UVP are obtained, respectively, as follows:

vpDt,t+1 = ivDt,t+1 − Et(rvDt+1), (6)

vpUt,t+1 = ivUt,t+1 − Et(rvUt+1).

2.2. The dynamics of variance risk premiums

We use daily prices for options on the S&P 500 index at different strikes and ma-

turities, sourced from OptionMetrics, to obtain the risk-neutral components of DVP and

UVP, and we use intradaily S&P 500 index prices sampled every 15 minutes, sourced

from Tickdata, to obtain the realized semivariances. Our sample period runs between

April 1991 and December 2019.

While the literature has examined various models for predicting the total realized

variance (see Bekaert and Hoerova (2014) for a thorough discussion), there is limited
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research on predicting the downside and upside realized variances.1 Table 1 explores

five forecast specifications of one-month-ahead realized semivariances using the regres-

sion framework in Equation (5). The specification in measure (1) assumes that realized

semivariances follow a Martingale process (see also Kilic and Shaliastovich (2019)), while

measures (2) to (5) consider various combinations of predictors, including past realized

variance and semivariances calculated at various horizons. Both the simple AR(1) and the

heterogeneous autoregressive (HAR) framework using the past monthly (rvit−1m,t), weekly

(rvit−5d,t), and daily (rvit−1d,t) realized semivariances significantly improve the goodness

of fit for both downside and upside realized variances with respect to the Martingale

specification.2 In column (5), we include downside and upside option-implied variances,

respectively. This last specification yields the best predictive performance for both down-

side and upside realized semivariances. Therefore, we use measure (5) to estimate the

downside and upside expected physical variances.

With the risk-neutral and physical expected variance estimates, we obtain DVP and

UVP as in Equation (6). The sum of the two VP components yields the total VP. In the

remainder of the paper, we use the end-of-month estimates as our benchmark DVP and

UVP measures.

We find that our benchmark monthly U.S. DVP and UVP measures differ in their

unconditional and time-series properties. First, from Table 2, the option-implied down-

side variance is, on average, higher than the expected downside realized variance, which

yields a positive DVP with an average of 15.97 squared percent. The positive nature

of DVP holds for all other measures considered and is consistent with the evidence in

the existing literature. DVP is prone to large positive realizations, including the large

spike during the 2007-09 financial crisis, as shown in Figure 1. UVP is also, on av-

erage, significantly different from zero but considerably smaller than the average DVP

(1.26 versus 15.97, respectively). As shown in Figure 1, UVP displays negative spikes

in a few episodes. For instance, UVP reached negative 35.48 squared percent during

the Lehman Brothers aftermath, which is almost 11 standard deviations away from its

historical average.

Second, we find that the total U.S. VP comoves more closely to DVP than to

UVP. Panel C of Table 2 shows that the correlation between VP and DVP using our

chosen model is 0.97, while that between UVP and VP is 0.26. Moreover, our DVP and

UVP measures are statistically uncorrelated. DVP and UVP are highly correlated across

measures, with a correlation coefficient ranging from 0.74 to 0.99 for DVP and from 0.74

1Table A1 in the Internet Appendix shows the results of using alternative models to predict the total
realized variance.

2This HAR framework for realized semivariances extends Corsi (2009), who focuses on forecasting
the total realized variance. Feunou, Jahan-Parvar, and Okou (2017) also consider the HAR framework
to approximate the expectations of downside and upside realized variances. However, they do not report
the coefficients associated with the HAR components or the fit of the model, and they conclude that the
results for the HAR specification are qualitatively similar to those for the Martingale specification.
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to 0.95 for UVP (see Table A2 in the Internet Appendix.)

Third, the U.S. DVP exhibits a negative correlation with monthly U.S. industrial

production growth (ρ = -0.29); in contrast, UVP is positively correlated with the growth

rate (ρ = 0.17), suggesting weakly procyclical dynamics. Both correlations are statisti-

cally significant at the 1% level.

Fourth, the U.S. UVP is more transitory than DVP. The AR(1) coefficient of our

DVP measure is 0.80, whereas that of our UVP measure is only 0.22. These four empirical

facts are robust across alternative measures.

Taken together, our findings suggest that investors, in general, demand much higher

compensation for downside shock exposure than for upside shock exposure, although,

on average, investors dislike risks emanating from both tails. However, compensations

demanded for bearing downside and upside variance risks have different dynamics in

terms of their persistence and their relation with current economic conditions.

The properties of our U.S. VP measures are similar to those reported in the litera-

ture. For instance, Held, Kapraun, Omachel, and Thimme (2020) find that the U.S. DVP

is, on average, positive and much larger in magnitude than UVP, and that UVP is also,

on average, positive. In Kilic and Shaliastovich (2019), DVP is positive and UVP is, on

average, negative (given our definition of VP, as they define VP as the difference between

the physical and the risk-neutral expectations). Nevertheless, like ours, the UVP in Kilic

and Shaliastovich (2019) remains positive most of the time except for a few sharply nega-

tive realizations. This difference is driven mostly by the fact that Kilic and Shaliastovich

(2019) use the Martingale assumption when obtaining the physical expectation of the

variance.3

2.3. International stock return predictability

We now examine the international stock return predictability patterns of U.S. DVP

and UVP. We take the perspective of a global investor whose asset values are denominated

in U.S. dollars. We consider the U.S. dollar excess returns of 22 countries’ headline stock

market indexes covering North America, Asia, and Europe. Log market returns are

obtained from their total return indexes, sourced from DataStream, and the risk-free rate

is the zero-coupon yield of U.S. Treasury bonds, sourced from Federal Reserve Economic

Data (FRED). As before, our sample runs from April 1991 to December 2019 (T = 345

months).

The main predictability regression is

κ−1rit,t+κ = aκ + bDκ vp
D
t,t+1 + bUκ vp

U
t,t+1 + εi,t+κ, (7)

3Figure A1 in the Internet Appendix compares our benchmark VP measures with those obtained using
the Martingale measure as in Kilic and Shaliastovich (2019). In unreported results, we show that the
short-term predictability of UVP and DVP for international excess stock returns is robust to considering
alternative VP measures, including the Martingale measure.
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where t denotes the month and rit,t+κ denotes the κ-month-ahead log excess returns for

country i. A useful null regression specification imposes the same predictive coefficients

for DVP and UVP. We control for country fixed effects to account for time-invariant

characteristics.

Table 3 compares the results of the null and the main predictability regressions at the

1-, 3-, 6-, and 12-month horizons, and the full-horizon predictability patterns are shown

in Figure A2 in the Internet Appendix. Our results for the null model are consistent with

those in the literature (see, e.g., Londono (2015) and Bollerslev, Marrone, Xu, and Zhou

(2014)). In particular, the hump-shaped predictability pattern of the total VP peaks at

around the six-month horizon.

Our main empirical result is that acknowledging asymmetry in VP improves its

predictability for international stock returns and therefore offers more joint information

for understanding the latent behaviors of global EPs. The adjusted R-squareds of our

main bivariate specification are larger than those of the null model for all within-one-

year horizons considered.4 In addition, the predictability patterns of DVP and UVP are

different. While DVP exhibits a hump-shaped predictability pattern similar to that of

total VP, UVP is a useful predictor mainly at short horizons. The variance decomposition

(row “VARC%” in Table 3) confirms that the DVP contribution to predictability becomes

dominant as the horizon increases, whereas the UVP contribution dominates mostly at

horizons between one and three months. Our results thus suggest that decomposing the

U.S. VP into its downside and upside components might introduce more flexibility in

capturing the mixed underlying dynamics of international EPs at different horizons.

Next, we explore variations in DVP’s and UVP’s ability to predict stock returns

across countries.5 In a world economy with global agents and various sources of risk,

cross-country differences in global risk compensations should intuitively be driven by

their different risk exposures. We formalize this hypothesis and explore cross-country

predictability variations, centering our attention on proxies for economic and financial

exposure, EEi and FEi, respectively, as the main drivers. We propose the following

4The R-squareds for the null specification are considerably lower than those reported in Londono
(2015) for two main reasons. First, our sample is longer (1991 to 2019 versus 1990 to 2012 in Londono
(2015)). Second, our sample of international stock returns includes many more countries (22 versus 8).
When we use the countries in our sample for the period between 1991 and 2012, R-squareds peak at 4%
at the six-month horizon, which is closer to the results in Londono (2015) and to those in Bollerslev,
Marrone, Xu, and Zhou (2014), using the global VP instead of the U.S. VP.

5Figures A3 and A4 in the Internet Appendix show the predictive coefficient estimates associated
with DVP and UVP, respectively, in a country-level regression setting. In unreported results, which
are available from the authors upon request, we show that the predictability patterns using our sample
period and the country-level setting are robust to considering alternative VP measures, including Mar-
tingale measures, and to controlling for other predictors, including short-term interest rates, interest rate
differentials, and stock valuation ratios.
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setting:

κ−1rit,t+κ = aκ + (bDκ + bDEE,κEE
i + bDFE,κFE

i)vpDt,t+1 (8)

+ (bUκ + bUEE,κEE
i + bUFE,κFE

i)vpUt,t+1 + εi,t+κ.

We use the time-series average of the trade-to-GDP ratio, sourced from the World Bank,

to capture a country’s economic exposure (see, e.g., Alesina, Spolaore, and Wacziarg

(2000) and de Soyres and Gaillard (2022)) and the time-series average of total foreign

asset holdings from and to country i divided by its GDP to capture a country’s financial

exposure (see, e.g., Schularick and Steger (2010)).6 Table 4 presents the country-level

exposure proxies (in percentages and as a proportion of the U.S. ratios) and classifies

countries with relatively high (H), medium/average (M), and low (L) global exposure.

The two exposure proxies are moderately correlated across countries (ρ=0.48).

Table 5 shows the results for the setting in Equation (8). To facilitate the interpre-

tation of our results, EEi and FEi are expressed as proportions to the U.S. ratios; that

is, the financial and economic exposure of the United States is equal to 1. Thus, for each

horizon, the coefficients bDκ + bDEE,κ + bDFE,κ and bUκ + bUEE,κ + bUFE,κ are the predictive coef-

ficients of DVP and UVP, respectively, for U.S. stock excess returns. For most horizons,

bDEE,κ (bDFE,κ) is positive (negative) and significant, which suggests that higher economic

(financial) exposure is associated with a higher (lower) DVP coefficient. The opposite

relation is observed between UVP predictability and economic and financial exposure. In

particular, for horizons of fewer than seven months, bUEE,κ (bUFE,κ) is negative (positive)

and significant (only for the two-month horizon).7

2.4. Global variance premium components

Thus far, we have considered the U.S. variance risk premium’s downside and upside

components as our global predictors. Although DVP and UVP can also be calculated

for other countries, data availability is limited to a handful of countries and for a much

shorter sample than for the United States. To assess whether our results remain robust

when we consider global predictors constructed using VPs from a collection of countries,

6Specifically, for country i in year t, we obtain the total asset holdings (equity and debt securities) of
residents in country i in the rest of the world plus the total asset holdings of other countries’ residents in
country i, and we divide this sum by country i’s GDP; we then take the time-series average. The holding
data are available at yearly frequency, and are obtained from Tables 1 and 8 from the Coordinated
Portfolio Investment Survey conducted by the International Monetary Fund. The first available year is
2001.

7In Table A3 of the Internet Appendix, we show that our results remain robust if we consider a setting
in which EE and FE are time varying. In Table A4, we also explore the robustness of our results to
several alternative financial exposure measures: the ratio of international bank claims to GDP, sourced
from the BIS, the capital market restriction index in Fernandez, Klein, Rebucci, Schindler, and Uribe
(2016), and the equity market domestic investment share, sourced from the IMF’s CPIS. Our results
remain robust for all variables except for a measure of domestic investment share, which is more closely
related to home biasedness than financial exposure to global shocks. Overall, financial exposure seems to
explain the cross-country predictability patterns mostly for horizons between 2 and 7 months for DVP.
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we use the method described in Sections 2.1 and 2.2 to separately calculate DVPs and

UVPs for Germany, France, and Switzerland for a sample starting in April 2003.8 We

also calculate a global average DVP and UVP as the equal-weighted averages of DVP

and UVP for four countries (including the United States).

Table 6 shows a set of summary statistics for the international DVPs and UVPs

and for their respective global averages. The main stylized facts documented for the U.S.

DVP and UVP hold. In particular, for all countries and for their global average, it holds

that (i) DVP is large and significant (panel A of Table 6) and displays positive spikes in

episodes of heightened uncertainty; (ii) UVP is, on average, positive, quantitatively much

smaller than DVP, and even statistically insignificant for Germany (panel B); and (iii)

UVP displays large negative spikes, which often coincide with the positive DVP spikes.9

Moreover, the variance premium components are highly correlated across countries, with

correlations ranging between 0.85 and 0.93 for DVP (panel C) and between 0.72 and 0.87

for UVP (panel D). These high correlations imply that different weighting schemes used

to calculate global averages should yield very similar results.

Table 7 compares the predictability patterns from the panel setting in Equation (7)

using either the U.S. or the global averages of DVP and UVP for the overlapped sample

starting in April 2003. Given the high correlation between the U.S. and the global

average of the VP components (0.94 for DVP and 0.91 for UVP), it is not surprising

that their predictability patterns are very similar. In particular, DVP predictability has

a hump-shaped pattern that peaks at around the three- to six-month horizon, while the

UVP predictability pattern is strictly decreasing. We relegate full-horizon predictability

patterns to the Internet Appendix (see Figure A5).

Three main takeaways from this empirical section are important to the empirical

model that we introduce next. First, U.S. DVP and UVP display different dynamics

and are useful short-term predictors of international stock excess returns, which suggests

distinct underlying determinants. Second, there are gains in acknowledging asymmetric

risk compensations in international return predictability, which indicates the importance

of asymmetric determinants. Third, there is some degree of cross-country variation in the

predictability patterns and significance of the U.S. DVP and UVP driven by economic

and financial exposure to global shocks, which suggests that there is information in the

cross section that can be exploited to understand the global risk premium and the drivers

8To the best of our knowledge, the option data needed to calculate the VP components are only
available for the following other countries: the Netherlands, the United Kingdom, and Japan. However,
sufficient data to calculate the VP components for these countries start in the mid-2000s.

9Held, Kapraun, Omachel, and Thimme (2020) extend the calculation for the total VP and its com-
ponents to eight international markets and their evidence is similar to ours. In particular, they find that
DVP is, on average, consistently positive for all markets and much larger in magnitude than UVP. UVP
is, on average, positive for the United States and France but turns negative for Germany and Switzerland.
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of cross-country heterogeneity in global risk compensation.

3. An Empirical Model

In this section, we introduce an empirical model to understand the global determi-

nants of international equity risk premiums by exploiting the ability of DVP and UVP

to predict international stock returns documented in Section 2. The main intuition of

the model is that the observed international stock return predictability should be driven

by common economic determinants of VPs and short-term international EPs. Because

we observe the relation between VPs and international EPs through the predictability

results, we can infer the relative importance of these common economic determinants

in driving global equity risk compensations across horizons. We introduce our empirical

model and estimation strategy in Section 3.1 and our choices for the common determi-

nants and their dynamics in Section 3.2.

3.1. Estimation strategy

The main intuition for our estimation strategy comes from consumption-based

frameworks that yield a variance risk premium. In particular, under certain kernel spec-

ifications (e.g., recursive preferences with long-run risk as in Bollerslev, Tauchen, and

Zhou (2009), power utility with external habit formation and non-Gaussian shocks as in

Bekaert and Engstrom (2017), or asymmetric jumps as in Kilic and Shaliastovich (2019)),

variance risk is priced and its compensation is potentially asymmetric, given good or bad

states of nature. The dynamics of VP and EP should both be driven by the second

moments of kernel shocks. Extending this intuition to an international setting, assuming

without loss of generality a global pricing kernel and comoving dividend growth pro-

cesses, international EPs should reflect compensations for common exposures to these

kernel shocks. In the rest of the paper, we refer to such second moments of kernel shocks

as “common risk premium determinants.”

Given these economic intuitions, we propose an empirical model with a two-stage

estimation strategy.10 First, we denote our empirical proxies for DVP and UVP v̂pDt and

v̂pUt , respectively, given the unknown loading parameter candidates, denoted by W :

v̂pDt = vpD0 +
(
WD′

0 +WD′
1 zt

)
Xt, (9)

v̂pUt = vpU0 +
(
WU ′

0 +WU ′
1 zt

)
Xt,

whereXt denotes a set of common risk premium state variables andWD
0 ,WD

1 ,WU
0 , and

WU
1 are all constant matrices. We use the squared real growth innovation as a proxy for

zt to reflect potential risk premium nonlinearity in an uncertain economic environment

(for reasons such as learning, as in David and Veronesi (2013), or arbitragers, as in

10Appendix B in the Internet Appendix introduces and solves a general, no-arbitrage international
asset pricing model in closed-form that motivates our empirical model and choices.
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Hong, Kubik, and Fishman (2012)). We estimate separate loadings of DVP and UVP

on common risk premium state variables by jointly matching moments of the empirical

estimates of DVP and UVP in a generalized method of moments (GMM) system.11

In the second stage, we write down the following general expression for country i’s

equity risk premium for horizon (month) κ:

ÊP
i

κ,t =
(
V ′
κ,0 + V ′

κ,1EE
i + V ′

κ,2FE
i + V ′

κ,3zt

)
Xt (10)

+ Idiosyncratic Part,

where Vκ,0,Vκ,1,Vκ,2, and Vκ,3 are all constant matrices that are common for all coun-

tries. To characterize heterogeneity in global compensations, we assume that the country-

level loadings on common risk premium state variables are characterized by both economic

and financial exposure to global risks, denoted EEi and FEi, respectively, and, as for

VPs, by the squared real growth innovation. The modeling of cross-country heterogeneity

is consistent with our empirical evidence (see Section 2.3), and can be motivated from

an international asset pricing framework with comoving country dividend growth pro-

cesses (see Internet Appendix B). The idiosyncratic part, which is not of interest for the

purpose of our research, reflects compensations for country-specific risk factors that are

orthogonal to the common risk component.

The model-implied κ-month predictive coefficients of DVP and UVP for country i’s

EP can be then written as:

b̂i,Dκ ≡
Cov(v̂pDt , ÊP

i
κ,t)

V ar(v̂pDt )
=

(
V i′
κ ΞWD

)(
WD′ΞWD

) , (11)

b̂i,Uκ ≡
Cov(v̂pUt , ÊP

i
κ,t)

V ar(v̂pUt )
=

(
V i′
κ ΞWU

)(
WU ′ΞWU

) ,
where V i

κ denotes matrix
[
V ′
κ,0 + V ′

κ,1EE
i + V ′

κ,2FE
i V ′

κ,3

]′
; Ξ is the variance-covariance

matrix of the risk premium determinants and of the risk premium determinants each

multiplied by zt (i.e., variance-covariance matrix of
[
Xt Xtzt

]′
). WD, which denotes

matrix
[
WD′

0 WD′
1

]′
, and WU , which denotes matrix

[
WU ′

0 WU ′
1

]′
, are estimated

from the first stage (Equation (9)).

In this second stage, we estimate unknowns in {Vκ,0,Vκ,1,Vκ,2,Vκ,3} one horizon

at a time (for 12 horizons). For each horizon κ, the estimation is conducted by minimizing

the sum of squared standardized distances between model-implied and empirical country-

level predictive coefficients from Section 2.

11It may be quite natural to consider using simple ordinary least squares (OLS) projections to obtain
these separate loadings. However, OLS regressions allow for residuals and do not guarantee dynamic
moment matching; in addition, OLS regressions suffer from co-linearity given that, by design, our risk
premium state variables comove with each other (e.g., risk aversion loads on growth shocks; see details in
Section 3.2 and Internet Appendix C). Both concerns can be jointly resolved using a GMM framework.
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3.2. Choices for common risk premium determinants

Our choices for common risk premium determinants, Xt in Equations (9) and (10),

are consistent with models in the consumption-based asset pricing literature that yield

asymmetric variance risk compensations. Specifically, kernel disturbances come from

asymmetric non-Gaussian shocks to the real growth process or from the risk preference

process. As noted before, risk premium determinants should be second moments of kernel

shocks.

We assume that the disturbances for the two fundamental state variables – real

economic growth as denoted by θt and relative risk aversion of the global representative

agent as denoted by qt – have the following joint dynamics (see Appendix C in the Internet

Appendix for explicit expressions):

[
θt+1 − Et(θt+1)

qt+1 − Et(qt+1)

]
=

[
δθ,θp −δθ,θn 0 0

δq,θp δq,θn δq,qh −δq,ql

]
ωθp,t+1

ωθn,t+1

ωqh,t+1

ωql,t+1

 , (12)

where we assume flexible tail dynamics for the state variables. Specifically, as modeled

in Bekaert, Engstrom, and Xu (2022), the disturbance of the real economic growth is

decomposed into two independent centered gamma shocks:

ωθp,t+1 = Γ(θpt, 1)− θpt,

ωθn,t+1 = Γ(θnt, 1)− θnt.

According to Equation (12), the total real growth disturbance is δθ,θpωθp,t+1−δθ,θnωθn,t+1.

Given δθ,θp, δθ,θn > 0 and the positive skewness of gamma distributions, ωθp,t+1 (ωθn,t+1)

governs the right-tail (left-tail) dynamics of growth distribution with its time-varying

shape parameter θpt (θnt) determining the conditional higher moments of the growth

disturbance shock. For example, given the moment generating function of independent

gamma shocks, the conditional variance of θt+1 is δ2θ,θpθpt + δ2θ,θnθnt and the conditional

unscaled skewness is 2δ3θ,θpθpt − 2δ3θ,θnθnt. Increases in θpt (θnt) imply higher (lower)

conditional skewness while increasing conditional variance, and hence θpt (θnt), can be

interpreted as the “good” (“bad”) uncertainty state variable. This composite disturbance

structure is one of the non-Gaussian shock assumptions that the literature has explored

with the goal of modeling macro or financial state variable processes more realistically

(see, e.g., Eraker and Shaliastovich (2008); Fulop, Li, and Yu (2015); Segal, Shaliastovich,

and Yaron (2015); De Groot (2015); Bekaert and Engstrom (2017); and Xu (2021)).

Similarly, ωqh,t+1 ∼ Γ(qht, 1)− qht and ωql,t+1 ∼ Γ(ql, 1)− ql denote the high and low risk

aversion shocks. We characterize the low risk aversion fluctuation as homoskedastic (i.e.,

ql). This assumption aims to capture the possibility that most of the heteroskedasticity

in risk aversion is driven by high risk aversion events, which helps keep the estimation
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manageable.

Thus, there are four kernel shocks, [ωθp,t+1, ωθn,t+1, ωqh,t+1, ωql,t+1], which are mu-

tually independent and follow centered gamma distributions with time-varying shape

parameters, except, for simplicity, the low risk aversion fluctuation. We assume simple

AR(1) processes for the good and bad economic uncertainty and the high risk aversion

state variables; that is, ∀xt ∈Xt ≡
[
θpt θnt qht

]
,

xt+1 = µx + ρxxt + σxωx,t+1, (13)

where all parameters are assumed to be positive and Xt is the vector of risk premium

determinants, given our non-Gaussian shock assumptions.

Analytically and statistically, Bekaert and Engstrom (2017) show that gamma shock

assumptions are quite flexible in capturing realistic dynamics of fundamental higher mo-

ments while keeping the model tractable. Economically, this framework generates non-

zero correlations between level and second (or higher-order) moment shocks, which is

more consistent with existing empirical evidence (e.g., Adrian, Boyarchenko, and Gian-

none (2019) and Bekaert and Popov (2019)), while Gaussian-based frameworks typically

separately model level and higher moment state variables. Equation (13) captures that

when growth unexpectedly declines this period (i.e., a large realization of ωθn,t > 0 in

the left tail), one might expect a higher chance for extreme future growth declines, more

growth volatility from the left tail, and more negative growth skewness (i.e., a higher θnt).

Moreover, the conditional variance of the relative risk aversion state variable (inverse sur-

plus consumption ratio) in Campbell and Cochrane (1999) also comoves positively with

the relative risk aversion level, suggesting a potentially positive relationship between risk

aversion level and volatility (see Xu (2021) for a detailed proof). The use of gamma

shocks is suitable for our research because it efficiently summarizes conditional moments

with one state variable, which allows us to realistically match the dynamics of variance

and equity risk premiums while keeping the estimation system manageable in terms of

the number of unknowns.

4. Data and Estimation

In this section, we estimate the parameters driving the dynamics of the common

risk premium determinants and then estimate VP’s and EP’s loadings on these common

risk premium determinants.

4.1. Risk premium determinants

We follow the empirical macro literature (e.g., Jurado, Ludvigson, and Ng (2015))

and use the change in the log U.S. industrial production (2007=100) as the empirical
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proxy for real economic growth θt. Time series for the U.S. industrial production index

run from January 1947 to December 2019 and are obtained from FRED. We use the Ap-

proximate MLE methodology from Bates (2006) to estimate non-Gaussian fundamental

shocks (ωθp,t, ωθn,t) and uncertainty state variables (θpt, θnt).

We then filter our risk aversion state variable and shocks from the risk aversion

estimates provided by Bekaert, Engstrom, and Xu (2022).12 Although measuring market-

wide risk aversion is an ongoing debate, their measure is suitable for our research because

it incorporates higher-order moment information from a wide range of financial and risk

variables and focuses on identifying nonlinear patterns (e.g., monthly spikes).13 The

longest available sample for the Bekaert-Engstrom-Xu risk aversion measure starts in

June 1986.

Table 8 shows summary statistics for the three time-varying risk premium deter-

minants, and Figure 2 shows their estimated dynamics during our sample period. De-

tailed parameter estimates and long-sample time-series plots are available in Internet

Appendix C. We discuss two observations that are relevant to our research. First, given

the statistical properties of gamma distributions, when keeping the scale parameter fixed,

a smaller shape parameter indicates that the distribution mass is more centered at the

tail. Table 8 shows that the estimated good economic uncertainty state variable, θpt, is,

on average, higher than the estimated bad economic uncertainty state variable, θnt, indi-

cating that there is a higher chance of extreme values from the left tail of the real growth

rate than from its right tail. Moreover, θpt (θnt) is procyclical (countercyclical) given the

significant negative (positive) correlation with the NBER recession indicator; intuitively,

good (bad) economic uncertainty may spike during good (bad) economic conditions. Ac-

cording to the first two plots of Figure 2, both good and bad economic uncertainty state

variables also appear quite persistent (with AR(1) coefficients of 0.972 and 0.911, re-

spectively). While θpt comoves mostly with major cyclical ups and downs, θnt captures

excessive left-tail events to industrial production, such as the effects of Hurricane Katrina

(September 2005), the collapse of Lehman Brothers (October 2008), and the U.S.-China

trade war (summer 2018). The bad uncertainty contributes, on average, 67% (and more

during recessions) to the total conditional variance of economic growth.

Second, the risk aversion state variable qht captures the variability in the risk aver-

sion shock that is cleansed from macroeconomic shocks. The estimated qht process is

12These authors provide both relative risk aversion (2 exp(qt)) and the risk aversion state variable
(qt = −st, where st is conceptually the log surplus consumption ratio as in a habit-formation model) on
their websites. To precisely fit the purpose of our study, we use the time series of qt.

13In comparison, the risk aversion measure of Campbell and Cochrane (1999) constructed as past
quarterly consumption growth (Wachter (2006)) would not be suitable for our research because it is
a “fundamental” variable (i.e., constructed from current and past quarterly or annual consumption
growth). Miranda-Agrippino and Rey (2020) also provide a risk aversion measure, which is the residual
of regressing their Global Financial Cycle series on current MSCI world realized return variance; their
measure is also not suitable for our research because it uses price series observed from all geographical
areas, while we focus on developed markets.
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strictly countercyclical and positively skewed, exhibiting moderate monthly persistence.

The time-series plot shows that risk aversion variability can also spike significantly in non-

NBER recession episodes, such as the 1997 Asian Crisis, 9/11 and the corporate scandals

during the 2000s, and the 2012 European Debt Crisis. We find that macroeconomic

shocks account for about 15% of the total risk aversion variability.

4.2. Two-stage estimation and model fit

For the first-stage estimation of the GMM (Section 3.1), we use the empirical

estimates of the VP components from Section 2 to generate orthogonality conditions:

mean, variance, scaled skewness, scaled kurtosis of DVP and UVP (eight moments),

the covariance between DVP and UVP (one), and the fraction of the DVP in total

VP (one). Each raw moment condition is then tensor-multiplied with a set of lagged

instruments {1, εθ,t−1, εq,t−1, ε2θ,t−1, ε2q,t−1}, where εθ,t−1 = θt−1 − Et−2(θt−1) and εq,t−1 =

qt−1 − Et−2(qt−1). The GMM system has 50 moments and 14 W unknowns and is esti-

mated iteratively. Then, for each horizon, the second-stage estimation takes the first-stage

VP parameter estimates and the 44 international predictive coefficients (22 b̂i,Dκ e’s and

22 b̂i,Uκ ’s from the 22 countries) to obtain the 12 V unknowns from Equation (10) that

determine the global risk compensation part of international EPs. We use a grid of 10,000

initial value combinations in each estimation.

Table 9 presents the moment-matching results and test specifications of the GMM

system for the dynamics of the VP components. Unconditionally, all moments are signif-

icantly close to their empirical counterparts, and we fail to reject the Hansen’s overiden-

tification test. To evaluate the dynamic fit of DVP and UVP, Figure 3 shows that DVP

and UVP estimates from the model (solid lines) are significantly correlated with their

empirical counterparts (dashed lines) with coefficients of 0.85 and 0.47, respectively.

Table 10 illustrates the fit of the international predictive coefficient estimates of

DVP and UVP by evaluating the fit of the model-implied mean, median, and standard

deviation of the country predictive coefficients at each horizon. From panel A, the model

fits the level and the cross-country dispersion of the DVP predictive coefficients quite well.

Almost all model moments are within 1.645 standard deviations of the empirical coun-

terparts; the only exception is the dispersion for the one- and two-month horizons. From

panel B, both the model-implied level and cross-country dispersion of the UVP predictive

coefficients are statistically close to their empirical counterparts, except for those beyond

10 months. These exceptions correspond to insignificant predictability coefficients from

our empirical evidence. In general, our evidence suggests that the exposure measures, as

conjectured in Equation (10), have the potential to explain the cross-country dispersion

in the predictive coefficients.

Finally, we discuss three other observations from Table 10 that are consistent with
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the empirical evidence. First, both the mean and the median of country predictive

coefficients for the 22 countries are statistically close to the estimates in Table 3. Second,

the model fit result also suggests that DVP and UVP should predict international EPs

through different state variables, and the economic relevance of these state variables

should be different across horizons. Third, the cross-country dispersion in DVP and

UVP predictability also changes across horizons, suggesting that different international

exposures may change both the level and the cross-horizon pattern of DVP or UVP

predictability.

5. Economic interpretations

In this section, we discuss the economic interpretations of our empirical model.

To obtain insight into both the dynamics of international EPs and the drivers of the

transmission of VPs across countries, we use both the time-series return predictability

and the variation in predictability across countries. As a result, through the lens of

our model, we are able to interpret (i) the dynamics of the VP components; (ii) their

stock return predictability in an “average” country with median economic and financial

exposure levels, and (iii) their stock return predictability in countries with low or high

economic and financial exposure levels. Taking these results together, we discuss the

relationship between global determinants and international EPs across horizons, across

time, and across countries.

5.1. The dynamics of the VP components

Table 11 presents the estimation results of the parameters from Equation (9) and

the variance contribution (VARC) of each premium state variable. By construction,

VARCs from the DVP system and the UVP system, respectively, should add up to

100%. From this table, DVP loads strongly and positively on variations in risk aversion

that are not explained by business cycle fluctuations, qht. According to the variance

decomposition results, qht accounts for 61.56% of the explained dynamics of DVP. The

insignificant wDqh,1 estimate indicates that DVP increases with risk aversion regardless

of current business cycle conditions. In terms of economic magnitude, a one standard

deviation (SD) increase in risk aversion is associated with a 0.77 SD increase in DVP.

The bad economic uncertainty state variable, θnt, captures about 38.98% of the explained

DVP dynamics during normal periods (i.e., when zt is at its mean level). In addition, DVP

loads less positively on bad uncertainty during periods of economic turmoil (i.e., when

zt is higher than its mean level), given the negative wDθn,1 estimate; as a result, a one SD

increase in bad uncertainty yields an increase in DVP that ranges between 0.55 and 0.62

SDs, depending on the state of the economy. This evidence is potentially consistent with
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a widening disconnect between macro and asset prices under bad economic conditions due

to, among other causes, structural breaks and policy expectations (see, e.g., Smith and

Timmermann (2021) and Xu and You (2022)). Finally, the good economic uncertainty

state variable, θpt, has weaker statistical and economic significance in explaining DVP.

The evidence from Table 11 also suggests that UVP increases with procyclical good

economic uncertainty, which can be explained through the hedging demand of upside

volatility risk. In addition, UVP also increases with countercyclical bad economic uncer-

tainty and risk aversion through the general risk compensation intuition. These coun-

teracting drivers explain the relatively less persistent UVP dynamics, as documented

in Section 2.2. UVP is, overall, statistically procyclical, which is consistent with the

dominant positive contribution from the good economic uncertainty state variable. In-

terestingly, good economic uncertainty contributes slightly less positively to UVP during

extremely volatile months, according to the negative wUθp,1 estimate. One possible ex-

planation is that economic fallout leads to less demand to hedge against future upside

variance risk.

5.2. International stock return predictability: An average coun-

try view

We discuss the economic channels behind the ability of DVP and UVP to predict

international stock returns for an “average” country with median financial and economic

exposure to global shocks. We discuss the results using the mean value of zt, as empirically

zt appears to play less of an economically important role in determining international

EPs at the horizons of interests — the Vκ,3 coefficient estimates in Equation (10) are

economically small.

Figure 4-(A) shows the model-implied effect of a one SD increase in a common risk

premium state variable on an average country’s EP (in annualized percentages). For

horizons up to seven months, where we center our attention, the three main common risk

premium sources—good and bad economic uncertainties and risk aversion—contribute

positively to the average country’s EP (or global EP), suggesting that the global investor

demands, on average, positive compensations for individual countries’ exposure to global

good and bad macro risk. Moreover, the sensitivity of global EPs to these state variables

changes with the horizon. Economic risk compensation is crucial at short to mid horizons,

which are also typically the horizons of interest for various dynamic equilibrium models

in the literature. A one SD increase in bad economic uncertainty leads to an increase

in the global EP of between 2 and 6 annualized percent, reaching peak impact around

the three- to six-month horizons. This hump-shaped pattern (see the hollow dotted

line) appears highly consistent with the DVP predictability pattern, as documented in

Section 2. While both risk aversion and bad economic uncertainty meaningfully explain
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the dynamics of DVP (see Section 5.1), this hump-shaped pattern suggests that DVP

predicts international excess stock returns mainly through the bad economic uncertainty

compensation channel. In contrast, good economic uncertainty is mainly relevant at very

short horizons, which also matches with the UVP predictability pattern documented

earlier.

As a result, through the lens of our estimation, both bad and good economic uncer-

tainties play a significant role in explaining the EP of countries with median economic and

financial exposure and their relative importance in explaining the variability of global EP

change across horizons. Figure 4-(B) depicts the variance decomposition of the model-

implied global equity risk compensation at various horizons and shows that economic

uncertainties explain about 60% to 80% of the total variability at horizons under seven

months.

Figure 5 depicts the time series of the model-implied international EP for an aver-

age country at several horizons of interest (all scaled to annualized percentages) and up

to what extent this variation is explained by each state variable. Global EPs for these

horizons generally comove closely and are countercyclical, which is consistent with the

literature. Also, the global EP fluctuates less at longer horizons, such as 12 months. The

shorter-term global EP appears to be particularly higher than its longer-term counter-

part during periods of high economic uncertainty. For instance, during 1998 when good

uncertainty spiked and during 2007 to 2008 when bad uncertainty spiked (see Figure 2),

there are widening wedges between the shorter and the 12-month global EPs (see the

second and third plots of Figure 5). This finding is consistent with Figure 4, where we

show that economic uncertainties may be more important international EP determinants

at shorter horizons, while risk aversion affects the whole term structure.

5.3. International stock return predictability: A cross-country

view

In this section, we complement our average country analysis and calibrate the results

considering four country groups with low or high economic and financial exposure, where

“low” (“high”) uses the 33rd (67th) percentile value of the exposure measures explained

in Table 4.

Figure 6 is the cross-country version of Figure 4-(A), and the cross-country version

of Figure 4-(B) is available in Internet Appendix C. First, if we compare the top two

plots with the bottom two plots where economic exposure increases from low to high, we

find that global investors demand higher bad economic uncertainty compensation as the

hollow-dotted line moves upward. In contrast, good economic uncertainty compensation

decreases as economic exposure increases. Thus, there appear to be two tales of increasing

economic exposure. On the one hand, higher economic exposure means that it is harder to
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diversify away “bad” global economic systemic risk, hence, the global investor demands

higher compensation in such countries. On the other hand, higher economic exposure

also implies that “good” global growth spurts could be transmitted to the economies

of these countries, and while the good uncertainty compensation remains positive, it is

smaller. Overall, these findings are consistent with the evidence in Table 5, where we

document that countries with higher economic exposure exhibit a higher DVP coefficient

(i.e., significant and positive bDEE,κ) and a lower UVP coefficient (i.e., a significant and

negative bUEE,κ).

Comparing the left two plots with the right two plots where financial exposure

increases from low to high, we can see that global investors demand lower bad economic

uncertainty compensation as the hollow-dotted line moves downward. In other words,

lower global bad macro risk compensation is demanded in countries with higher financial

exposure. This result is consistent with the international financial openness literature,

according to which global investors demand lower risk compensation given a lower cost

of capital, greater firm and fundamental investment opportunities, and higher expected

growth (e.g., Bekaert and Harvey (2003) and Carrieri, Errunza, and Hogan (2007)). Since

financial exposure does not significantly explain the cross-country variation in the UVP

predictive coefficient, as suggested by the insignificant coefficients bUFE,κ in Table 5, we

focus on the determinants of DVP when discussing the effect of financial exposure.

To summarize, we find that global investors demand higher bad economic risk com-

pensation in countries with higher economic exposure to global shocks and countries

with lower financial exposure. It is noteworthy that, in the time series, risk aversion also

explains the variability of DVP quite well. However, we find that DVP predicts interna-

tional EPs and exhibits this particular hump-shaped predictability pattern through the

bad economic uncertainty channel rather than through the risk aversion channel. This

finding in turn suggests that economic uncertainties may be more important risk pre-

mium determinants at shorter horizons, while risk aversion could have a constant effect

on the whole term structure. Hence, risk aversion appears less informative about the

cross-country or cross-horizon patterns of international predictability that we document

in this paper. While there is little research on upside or “good” variance risk compensa-

tion, we find that this is mostly determined by good economic uncertainty. In particular,

countries with higher economic exposure exhibit a lower UVP coefficient, indicating that

global investors demand lower good economic risk compensation.

6. Conclusion

Our understanding of the mechanisms behind the commonality in international eq-

uity premiums and the transmission of global risks across international financial markets

remains an open debate in the literature. In this paper, we add to this debate using
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a novel approach in which we link empirical evidence for the international stock return

predictability of U.S. downside and upside variance risk premiums with the implications

from an empirical model featuring asymmetric economic uncertainty and risk aversion

using data for 22 countries from 1991 to 2019. We find that the international predictabil-

ity patterns of DVP (positive and countercyclical) and UVP (smaller in magnitude and

procyclical) are considerably different, with DVP being a robust mid-horizon (4-7 month)

predictor and UVP a short-horizon (1-3 month) predictor. Moreover, predictive coeffi-

cient estimates vary across countries, and this variation can be well explained by each

country’s level of financial and economic exposure to global shocks. Then, through the

lens of our empirical model, we find that DVP and UVP predict international stock re-

turns through different common risk premium determinants, mainly bad and good U.S.

macroeconomic uncertainties, respectively. Across countries, investors demand higher

compensation for bad economic uncertainty and lower compensation for good economic

uncertainty in countries with higher economic exposure, while they demand higher com-

pensation for bad economic uncertainty in those countries with lower financial exposure.

Our approach of linking international predictability evidence with the implications

from an empirical model allows us to use more information to infer the behavior of global

risk compensations over time, across horizons, and across countries. This methodology

should inspire several extensions of our work, including examining whether global risk

premium determinants transmit through local currency equity risk pricing or through

exchange rate channels, involving other international finance puzzles similar to the work in

Colacito and Croce (2010) and Colacito, Croce, Gavazzoni, and Ready (2018). Moreover,

our cross-country evidence should provide new testable hypotheses for future work on

general equilibrium international models.
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Table 1: Expected downside and upside realized variances

This table shows the coefficients associated with the predictors of one-month-ahead (22 days) downside
and upside realized variances in panels A and B, respectively. The specification in column (1) assumes
that realized variances follow a Martingale (E(rvit+1) = rvit, for i = D,U (downside or upside)). For the
specifications in columns (2) to (5), we estimate the following regression setting:

Et(rv
i
t+1m) = α̂i + γ̂iGi

t.

We consider the following predictors, Gt, at time t: the total realized variance calculated over the last

month (rvt−1m,t) and its downside and upside components (rvit−1m,t); realized semivariances calculated

using either the last five days (rvit−5d,t) or the last day of the month (rvit−1d,t); and the downside and

upside components of the option-implied variance (ivit,t+1m). All regressions are estimated using daily

data. The sample runs from April 1991 to December 2019. Heteroskedasticity and autocorrelation

consistent (HAC) standard deviations with 44 lags are reported in parentheses. ∗∗∗, ∗∗, and ∗ represent

significance at the 1%, 5%, and 10% confidence levels. The adjusted R2s are reported at the end of each

panel.

(1) (2) (3) (4) (5)
Panel A. Downside realized variance

Constant 0 4.17*** 4.11*** 3.88*** 3.18***
- (0.63) (0.67) (0.55) (1.00)

rvt−1m,t 0.43
(0.36)

rvDt−1m,t 1 0.62*** 0.10 0.29** 0.23***
(0.07) (0.21) (0.13) (0.08)

rvDt−5d,t 0.29** 0.27*

(0.13) (0.15)
rvDt−1d,t 0.06*** 0.04*

(0.01) (0.03)
ivDt,t+1m 0.08

(0.10)
Adj. R2 0.230 0.378 0.378 0.428 0.429

Panel B. Upside realized variance
Constant 0 3.73*** 3.80*** 3.39*** 0.84

- (0.64) (0.64) (0.59) (0.73)
rvt−1m,t -0.60

(0.40)
rvUt−1m,t 1 0.64*** 0.61*** 0.30** 0.07

(0.08) (0.17) (0.15) (0.11)
rvUt−5d,t 0.30** 0.24

(0.15) (0.15)
rvUt−1d,t 0.05*** 0.03**

(0.01) (0.01)
ivUt,t+1m 0.57***

(0.11)
Adj. R2 0.290 0.414 0.433 0.461 0.499
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Table 2: Summary statistics for variance premium components

This table reports time-series averages of the monthly risk-neutral and physical expectations of the
variances (ivt,t+1 and Et(rvt,t+1), respectively) as well as the corresponding monthly variance premiums
(VPs). The monthly time series the are end-of-month estimates from Table 1. All measures are in
units of monthly variance—i.e., in annual percentage squared divided by 12 (as commonly used in the
literature; see, e.g., Bekaert and Hoerova (2014) and Kilic and Shaliastovich (2019)). For VP estimates,
we also report standard deviations and minimum and maximum values. The sample runs from April
1991 to December 2019.

(1) (2) (3) (4) (5)
Panel A. DVP

Mean(ivDt,t+1) 23.67 23.67 23.67 23.67 23.67
Mean(Et(rv

D
t,t+1)) 10.87 7.04 7.08 7.05 7.69

Mean(vpDt,t+1) 12.79 16.63 16.58 16.61 15.97
SD(vpDt,t+1) 11.24 14.08 14.10 13.85 13.52
Min(vpDt,t+1) -23.49 2.47 2.41 2.21 2.24
Max(vpDt,t+1) 81.25 97.91 99.64 91.00 93.05

Panel B. UVP
Mean(ivUt,t+1) 11.03 11.03 11.03 11.03 11.03
Mean(Et(rv

U
t,t+1)) 10.50 7.07 7.02 7.34 9.76

Mean(vpUt,t+1) 0.53 3.96 4.01 3.69 1.26
SD(vpUt,t+1) 9.76 6.19 6.15 6.30 3.28
Min(vpUt,t+1) -138.25 -59.87 -64.41 -62.93 -35.48
Max(vpUt,t+1) 23.27 31.07 22.70 26.17 9.56

Panel C. Correlations within models
Correl(vpt,t+1,vpDt,t+1) 0.85 0.95 0.94 0.93 0.97
Correl(vpt,t+1,vpUt,t+1) 0.79 0.69 0.65 0.59 0.26
Correl(vpUt,t+1,vpDt,t+1) 0.35 0.43 0.36 0.25 0.03
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Table 3: International predictability of VP and its components

This table reports evidence for the ability of the variance premium and its components to predict inter-
national stock returns at various horizons of interest (in units of months). Our main specification is the
following:

κ−1rit,t+κ = aκ + bDκ vp
D
t,t+1 + bUκ vp

U
t,t+1 + εi,t+κ,

where rit,t+κ denotes the κ-month-ahead log excess returns for country i and vpDt,t+1 and vpUt,t+1 denote
downside and upside variance premium (DVP and UVP) estimates, respectively. We compare our main
specification with one in which the coefficients associated with DVP and UVP are homogeneous, which
is equivalent to a regression for the predictability of the total variance premium (VP):

κ−1rit,t+κ = aκ + bκ(vpDt,t+1 + vpUt,t+1) + εi,t+κ.

In both specifications, the coefficients are estimated using ordinary least squares, where the coefficients
associated with VP and its components are restricted to be homogeneous across countries. The VP
estimated coefficients and their h-lag corrected Newey-West standard errors (SE, in parentheses) are
reported along with the adjusted R2. “VARC” indicates the variance decomposition of the model. ∗∗∗,
∗∗, and ∗ represent significance at the 1%, 5%, and 10% confidence levels.

κ=1 κ=3 κ=6 κ=12

vp 0.119 0.265*** 0.313*** 0.160***
(SE) (0.137) (0.089) (0.067) (0.053)
vpD -0.011 0.215*** 0.299*** 0.179***
(SE) (0.137) (0.089) (0.067) (0.052)
[VARC%] [0.0%] [43.1%] [83.8%] [98.0%]
vpU 2.100*** 1.020*** 0.526*** -0.116
(SE) (0.374) (0.297) (0.181) (0.183)
[VARC%] [100%] [56.9%] [16.2%] [2.0%]

Adj. R2 0.04% 0.82% 0.66% 0.96% 1.67% 1.71% 0.85% 0.99%

28



Table 4: Country-level economic and financial exposures

This table presents the time-series averages of our proxies for country-level exposure to global risks. We
use the trade-to-GDP ratio (source: World Bank, 1990 to 2018) as the proxy for a country’s economic
exposure and the average total equity and debt security holdings from/to country i to/from the rest of
the world (source: IMF, The Coordinated Portfolio Investment Survey, 2001 to 2018) as the proxy for a
country’s financial exposure (Schularick and Steger (2010)). We report the average ratio in percentages
(“Ratio (%)”) and the average proportion with respect to the United States (“Prop. to U.S.”). We also
provide a within-variable sort based on percentiles for each variable: low, [0th, 33rd); middle, [33rd,67th);
high, [67th,100th].

Trade-to-GDP Holdings-to-GDP
Ratio Prop. L/M/H Ratio Prop. L/M/H
(%) to U.S. (%) to U.S.

Australia 39.83 1.60 L 106.86 1.17 L
Austria 88.24 3.51 M 171.78 1.96 H
Belgium 139.71 5.59 H 235.97 2.68 H
Canada 66.53 2.70 L 121.02 1.30 M
Denmark 86.31 3.43 M 178.42 1.90 M
Finland 69.74 2.78 M 211.84 2.35 M
France 52.74 2.11 M 189.13 2.08 L
Germany 66.41 2.61 M 148.07 1.66 M
Hong Kong 315.16 12.42 H 450.49 4.74 H
Ireland 163.12 6.48 H 1,185.89 12.71 H
Italy 48.60 1.94 L 121.86 1.39 L
Japan 25.14 0.99 L 86.32 0.92 L
Netherlands 125.27 5.00 H 396.21 4.43 H
Norway 70.08 2.85 M 63.61 0.71 M
New Zealand 58.01 2.36 L 223.50 2.31 M
Portugal 67.68 2.71 M 141.00 1.62 M
Singapore 353.76 14.28 H 329.81 3.60 H
Spain 53.40 2.13 L 114.65 1.30 L
Sweden 76.67 3.06 M 190.78 2.10 M
Switzerland 100.05 3.98 H 302.79 3.47 H
United Kingdom 53.74 2.16 H 236.11 2.60 L
United States 25.08 1.00 L 93.68 1.00 L
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Table 5: Country-level exposure and predictability patterns

This table shows the results for the following regression setting:

κ−1rit,t+κ = aκ + (bDκ + bDEE,κEE
i + bDFE,κFE

i)vpDt,t+1

+ (bUκ + bUEE,κEE
i + bUFE,κFE

i)vpUt,t+1 + εi,t+κ,

where EEi and FEi are the time-series averages of our proxies for economic and financial
exposure, respectively, which are described in Table 4. ∗∗∗, ∗∗, and ∗ represent significance at
the 1%, 5%, and 10% confidence levels. Robustness tests using time-varying exposure measures
and alternative financial exposure measures are presented in Tables A3 and A4.

bDκ bDEE,κ bDFE,κ bUκ bUEE,κ bUFE,κ R2

κ = 1 0.005 0.022 -0.040 1.992*** -0.078 0.161 0.838
(0.151) (0.018) (0.026) (0.482) (0.080) (0.148)

κ = 2 0.199* 0.023* -0.039** 0.955** -0.116** 0.164* 0.584
(0.111) (0.013) (0.018) (0.390) (0.056) (0.092)

κ = 3 0.216** 0.020* -0.032** 1.156*** -0.082 0.072 1.028
(0.094) (0.011) (0.015) (0.337) (0.054) (0.087)

κ = 4 0.232*** 0.020** -0.033** 1.413*** -0.078 0.046 1.725
(0.082) (0.009) (0.014) (0.334) (0.051) (0.089)

κ = 5 0.273*** 0.019*** -0.033*** 1.036*** -0.065* 0.043 1.729
(0.071) (0.007) (0.011) (0.240) (0.038) (0.058)

κ = 6 0.309*** 0.019*** -0.033*** 0.663*** -0.060** 0.038 1.861
(0.068) (0.006) (0.009) (0.201) (0.030) (0.042)

κ = 7 0.300*** 0.019*** -0.034*** 0.368* -0.055* 0.048 1.792
(0.066) (0.006) (0.008) (0.190) (0.031) (0.042)

κ = 8 0.250*** 0.019*** -0.034*** 0.312* -0.052 0.051 1.447
(0.068) (0.006) (0.008) (0.189) (0.032) (0.039)

κ = 9 0.231*** 0.018*** -0.034*** 0.036 -0.037 0.038 1.289
(0.064) (0.006) (0.007) (0.198) (0.034) (0.038)

κ = 10 0.206*** 0.018*** -0.033*** -0.026 -0.033 0.033 1.173
(0.061) (0.005) (0.007) (0.204) (0.030) (0.034)

κ = 11 0.200*** 0.018*** -0.033*** -0.084 -0.029 0.028 1.251
(0.056) (0.004) (0.006) (0.201) (0.027) (0.030)

κ = 12 0.192*** 0.018*** -0.033*** -0.076 -0.034 0.037 1.297
(0.051) (0.004) (0.006) (0.183) (0.024) (0.028)
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Table 6: Summary statistics for international variance premium components

This table reports time series averages, standard deviations (SDs), and minimum and maximum values of
the monthly downside (panel A) and upside (panel B) variance premiums (DVP and UVP, respectively)
for the United States, Germany, France, and Switzerland, as well as the equal-weighted average across all
countries, which we label as “Global avg.” All measures are in units of monthly variance—i.e., in annual
percentage squared divided by 12 (as commonly used in the literature; see, e.g., Bekaert and Hoerova
(2014) and Kilic and Shaliastovich (2019)). We also report correlations across countries for downside
(panel C) and upside (panel D) variance premiums. The sample runs from April 2003 to December 2019.

U.S. Germany France Switzerland Global avg.
Panel A. DVP summary statistics

Mean(vpDt,t+1) 16.110 12.440 19.675 12.186 15.103
SD(vpDt,t+1) 1.016 0.821 1.199 0.868 0.906
Min(vpDt,t+1) 3.514 -13.402 -8.966 -4.654 -5.349
Max(vpDt,t+1) 93.054 90.335 118.407 119.244 105.260

Panel B. UVP summary statistics
Mean(vpUt,t+1) 0.794 0.097 1.041 0.412 0.586
SD(vpUt,t+1) 0.256 0.185 0.328 0.244 0.226
Min(vpUt,t+1) -35.484 -25.172 -37.739 -34.511 -33.227
Max(vpUt,t+1) 8.660 4.572 20.559 7.627 7.673

Panel C. DVP correlations
U.S. 1
Germany 0.850 1
France 0.896 0.930 1
Switzerland 0.851 0.905 0.899 1
Global avg. 0.944 0.957 0.976 0.950 1

Panel D. UVP correlations
U.S. 1
Germany 0.871 1
France 0.759 0.805 1
Switzerland 0.720 0.748 0.759 1
Global avg. 0.909 0.923 0.929 0.883 1
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Table 7: The international predictability of U.S. and global average VP and its compo-
nents

This table reports evidence for the ability of the variance premium (VP) and its components to predict
international stock returns at various horizons of interest (in units of months). Our specification is the
following:

κ−1rit,t+κ = aκ + bDκ vp
D
t,t+1 + bUκ vp

U
t,t+1 + εi,t+κ,

where rit,t+κ denotes the κ-month-ahead log excess returns for country i and vpDt,t+1 and vpUt,t+1 denote
downside and upside (DVP and UVP) estimates, respectively. We compare the predictive power of the
U.S. VP components with that of the global average of the VP components calculated as the equally-
weighted average of the VP components of the United States, Germany, France, and Switzerland. The
coefficients are estimated using ordinary least squares, where the coefficients associated with VP and its
components are restricted to be homogeneous across countries. The VP estimated coefficients and their
h-lag corrected Newey-West standard errors (in parentheses) are reported along with the adjusted R2.
“VARC” indicates the variance decomposition of the model. ∗∗∗, ∗∗, and ∗ represent significance at the
1%, 5%, and 10% confidence levels. The sample runs from April 2003 to December 2019.

κ=1 κ=3 κ=6 κ=12
U.S. Global U.S. Global U.S. Global U.S. Global

avg. avg. avg. avg.

vpD 0.120 0.204 0.222* 0.268* 0.380*** 0.560*** 0.214*** 0.380***
(SE) (0.186) (0.206) (0.120) (0.145) (0.085) (0.087) (0.065) (0.060)
[VARC%] [0.3%] [-0.9%] [24.9%] [11.2%] [78.5%] [57.1%] [92.1%] [85.8%]
vpU 3.233*** 3.465*** 1.478*** 2.193*** 0.909*** 2.048*** -0.210 0.829**
(SE) (0.502) (0.529) (0.398) (0.438) (0.238) (0.308) (0.218) (0.329)
[VARC%] [99.7%] [100.9%] [75.1%] [88.8%] [21.5%] [42.9%] [7.9%] [14.2%]

Adj. R2 2.41% 2.20% 1.56% 2.32% 2.87% 5.64% 1.84% 4.11%

Table 8: Summary statistics for risk premium state variables

This table provides summary statistics for the three risk premium state variables introduced in
Section 3.2: good and bad economic uncertainty (θpt and θnt, respectively) and expected risk
aversion fluctuations (qht). The full sample estimation results and detailed dynamic processes
are available in Appendix C. ∗∗∗, ∗∗, and ∗ represent significance at the 1%, 5%, and 10%
confidence levels. The summary statistics are calculated for a sample running from April 1991
to December 2019.

θpt θnt qht
Panel A. Univariate statistics

Mean 476.020 3.342 0.838
SD 15.176 7.798 1.107
Skewness 0.724 5.133 3.379
AR(1) 0.972 0.911 0.500

Panel B. Correlation matrix

θpt 1
θnt -0.222*** 1
qht -0.070 0.191*** 1
NBER -0.182*** 0.532*** 0.205***
Cyclicality Pro- Counter- Counter-
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Table 9: Model fit: VP component dynamics

This table presents the moment matching results of the GMM system used to estimate the
loadings of downside and upside variance premiums (DVP and UVP, respectively) on the five
risk premium state variables (see details in Section 3.1). This GMM system has 14 unknowns and
50 moments and is estimated using iterative GMM. ∗∗∗, ∗, and ∗ indicate that the model estimate
is, respectively, within 1.645, 1.96, and 2.576 standard deviations (SDs) of the empirical point
estimate in the same row. Standard model specification statistics and empirical correlations are
shown at the end of the table, and the correlations are both statistically different from zero at
a 95% test.

Moment Empirical Boot. SE Model

1 vpD 15.972 (0.725) 16.795***
2 vpU 1.265 (0.173) 1.39***
3 (vpD − E(vpD))2 182.198 (33.504) 183.457***
4 (vpU − E(vpU ))2 10.755 (4.230) 10.744***
5 (vpD − E(vpD))3/(SD(vpD)3) 2.656 (0.885) 2.825***
6 (vpU − E(vpU ))3/(SD(vpU )3) -5.001 (3.959) -4.438***
7 (vpD − E(vpD))4/(SD(vpD)4) 12.293 (4.287) 12.047***
8 (vpU − E(vpU ))4/(SD(vpU )4) 53.202 (45.926) 52.268***
9 (vpD − E(vpD)) ∗ (vpU − E(vpU )) 1.262 (8.555) 1.17***

10 vpD/(vpD + vpU ) 0.927 (0.010) 0.918***

GMM J Statistics: 36.93
DF: 36
Hansen’s overidentification test, p-value: 0.43
Dynamic correlation with empirical estimates, DVP: 0.8518
Dynamic correlation with empirical estimates, UVP: 0.4675
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Table 10: Model fit: VP component predictive coefficients

This table provides the model fit results of the international stock return predictive coefficients
of the variance premium (VP) components (see details in Section 3.1). Panels A and B report the
average, median, and cross-country variations of the downside and upside variance premiums’
(DVP and UVP, respectively) predictive coefficients, respectively, and provide closeness tests
with their empirical counterparts; ∗∗∗, ∗∗, and ∗ indicate that the model estimate is, respectively,
within the 1.645, 1.96, and 2.576 standard deviations (SDs) of the empirical point estimate in
the same row.

Panel A. Average DVP coeff. Median DVP coeff. Cross-country SD DVP coeff.
Horizon Emp. SE Mod. Emp. SE Mod. Emp. SE Mod.

1 -0.011 (0.052) -0.029*** -0.036 (0.070) -0.007*** 0.245 (0.026) 0.142
2 0.188 (0.043) 0.168*** 0.151 (0.048) 0.189*** 0.202 (0.024) 0.137
3 0.215 (0.036) 0.200*** 0.188 (0.031) 0.214*** 0.171 (0.023) 0.122*
4 0.226 (0.036) 0.211*** 0.221 (0.024) 0.232*** 0.169 (0.026) 0.13***
5 0.262 (0.036) 0.245*** 0.262 (0.030) 0.270*** 0.169 (0.025) 0.128***
6 0.299 (0.036) 0.284*** 0.289 (0.032) 0.308*** 0.168 (0.026) 0.126***
7 0.287 (0.035) 0.275*** 0.265 (0.030) 0.298*** 0.166 (0.026) 0.128***
8 0.235 (0.034) 0.228*** 0.220 (0.027) 0.252*** 0.161 (0.027) 0.125***
9 0.214 (0.033) 0.209*** 0.214 (0.023) 0.233*** 0.157 (0.028) 0.122***
10 0.189 (0.033) 0.186*** 0.191 (0.022) 0.210*** 0.155 (0.027) 0.121***
11 0.185 (0.033) 0.182*** 0.184 (0.022) 0.204*** 0.153 (0.027) 0.121***
12 0.179 (0.032) 0.176*** 0.174 (0.023) 0.196*** 0.149 (0.025) 0.118***

Panel B. Average UVP coeff. Median UVP coeff. Cross-country SD UVP coeff.
Horizon Emp. SE Mod. Emp. SE Mod. Emp. SE Mod.

1 2.100 (0.241) 1.955*** 1.999 (0.184) 1.894*** 1.128 (0.204) 0.618*
2 0.922 (0.174) 0.846*** 0.995 (0.129) 0.871*** 0.814 (0.143) 0.650***
3 1.020 (0.117) 0.979*** 1.272 (0.144) 1.024** 0.548 (0.099) 0.419***
4 1.227 (0.106) 1.191*** 1.309 (0.122) 1.244*** 0.497 (0.077) 0.405***
5 0.891 (0.081) 0.873*** 0.906 (0.121) 0.918*** 0.380 (0.050) 0.354***
6 0.526 (0.063) 0.531*** 0.551 (0.072) 0.575*** 0.293 (0.045) 0.254***
7 0.276 (0.053) 0.287*** 0.299 (0.081) 0.323*** 0.247 (0.032) 0.225***
8 0.237 (0.053) 0.236*** 0.296 (0.086) 0.267*** 0.250 (0.030) 0.208***
9 -0.009 (0.045) -0.007*** -0.009 (0.048) 0.016*** 0.209 (0.031) 0.137*
10 -0.069 (0.047) -0.066*** -0.049 (0.052) -0.046*** 0.219 (0.034) 0.118
11 -0.125 (0.048) -0.121*** -0.122 (0.061) -0.102*** 0.225 (0.034) 0.098
12 -0.116 (0.047) -0.119*** -0.107 (0.053) -0.1*** 0.220 (0.039) 0.117
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Table 11: The dynamics of VP components and risk premium state variables

This table presents the GMM (Stage 1) estimation results and highlights the relative importance of the
risk premium state variables that drive the dynamics of VP components. For each GMM iteration, the

model-implied DVP and UVP (v̂pDt and v̂pUt , respectively) can be expressed as:

v̂pDt = vpD0 + wDθp,tθ̂pt + wDθn,tθ̂nt + wDqh,tq̂ht,

v̂pUt = vpU0 + wUθp,tθ̂pt + wUθn,tθ̂nt + wUqh,tq̂ht,

where, for x ∈ {θp, θn, qh}, x̂ indicates the estimated risk premium state variables (Section 3.2), and
wDx,t and wUx,t indicate the corresponding time-varying coefficients:

wDx,t = wDx,0 + wDx,1zt,

wUx,t = wUx,0 + wUx,1zt,

where zt is the percent-squared innovation to real monthly economic growth (unit: monthly growth
innovation-squared multiplied by 10000). Standard errors are shown in parentheses and variance
decomposition results are shown in the third row (“VARC”). The variance contribution is calculated as
βvcov(vt,ŷt)

ŷt
× 100%, where vt denotes an explanatory variable, βv the corresponding loading, and ŷt the

total explained y variable. ∗∗∗, ∗∗, and ∗ represent significance at the 1%, 5%, and 10% confidence
levels. Constants are not reported in this table but are included in the estimation (vpD0 =-49.391** and
vpU0 =-25.799***).

θpt θnt qht
DVP: wD0 0.113*** 1.088*** 9.400***

(SE) (0.043) (0.073) (0.333)
[VARC%] -0.23% 38.98% 63.71%

wD1 0.012*** -0.162*** -0.153
(0.001) (0.006) (0.106)
18.70% -19.01% -2.15%

UVP: wU0 0.058*** 0.278*** 0.438***
(0.009) (0.013) (0.102)
4.12% 0.55% -0.75%

wU1 -0.009*** 0.001 0.203***
(2.5E-04) (0.003) (0.043)
117.52% -0.78% -20.68%
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Figure 1: Downside and upside components of the variance risk premium

This figure shows the time series of the downside and upside variance premium components.
The construction details of variance risk premiums are discussed in Section 2. The down-
side (upside) variance risk premium is calculated as the difference between the option-implied
downside (upside) variance and the expected downside (upside) realized variance. We use the
best forecasts of the downside and upside realized variances from Table 1 (specification (5)).
Measures are in units of monthly percentages.
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Figure 2: State variable dynamics

This figure shows the dynamics of the estimated risk premium state variables (good and bad
economic uncertainty, θpt and θnt, and expected risk aversion fluctuations, qht) and the time-
varying loading instrument (monthly realized variance of economic growth, zt, multiplied by
10000) from April 1991 to December 2019. The corresponding summary statistics are shown
in Table 8. The full sample estimation results and detailed dynamic processes are available in
Internet Appendix C.
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Figure 3: Dynamic fit

This figure shows the dynamics of empirical and model-implied downside variance premium
(DVP, top panel) and upside variance premium (UVP, bottom panel) estimates. The dashed
red lines depict the empirical estimates as obtained from Section 2. The solid black lines depict
the model-implied estimates; the correlations with the DVP and UVP empirical estimates are
0.85 and 0.47, respectively. Other estimation details are shown in Table 9.
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Figure 4: Economic effects of risk premium state variables (S.V.s) on international equity
risk premiums: An average-country view

Panel (A) shows the model-implied effect of a one standard deviation (SD) increase in a
U.S./global risk premium state variable on an average country’s equity risk premium (EP),
where an average country is calibrated with median economic exposure EEi (the ratio of coun-
try i’s and the U.S.’s international trade-to-GDP) and median financial exposure FEi (the
ratio of country i’s and the U.S.’s international holding-to-GDP); see construction and data
details in Table 4. EP is expressed in annualized percentages for all horizons. The average
value of zt is used. Panel (B) shows the variance decomposition (in percentages) of the model-
implied international EPs at various horizons coming from different sources of state variables;
by construction, at each horizon, the sum of the three numbers sum to 100%.
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Figure 5: Time variation in the model-implied international equity risk premium

The first plot shows the time variation in the model-implied international equity risk premium
for an average country (with median economic and financial exposure). The international
equity risk premium means the compensation demanded due to global risks, and it is expressed
in annualized percentages in this plot. The next three plots present a dynamic breakdown,
showing how the time variation of the international equity risk premium would behave if we
keep the dynamics of one state variable and mute the dynamics from the other two state
variables, without re-estimation: from top to bottom, good macro uncertainty θpt, bad macro
uncertainty θnt, and risk aversion qht. Finally, in each plot, we show international equity risk
premiums over several representative horizons of interest: 1 month (dashed), 6 months (solid),
12 months (dotted).
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Figure 6: Economic effects of risk premium state variables on international equity risk
premiums: A cross-country view

This figure complements Figure 4-(A) with a cross-country view, showing the effect of a one
standard deviation (SD) increase in a common premium state variable on international equity
risk premiums. The results are calibrated using low and high economic and financial exposure,
with low (high) being those countries with exposure below the 33rd (above the 67th) percentile
value of the 22 countries; see construction and data details in Table 4. The EP is expressed
in annualized percentages for all horizons. A cross-country version of Figure 4-(B) is shown in
Appendix C of the Internet Appendix.
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INTERNET APPENDICES

A. Additional tables and figures for Section 2

Table A1: Expected realized variance

This table shows the coefficients associated with the predictors of one-month-ahead (22 days) total

realized variance. The specifications are similar to those for realized semivariances in Table 1. The

specification in column (1) assumes that the realized variance follow a Martingale (Et(rvt+1m) = rvt).

For the specifications in columns (2) to (5), we estimate the following regression setting: Et(rvt+1) =

α̂ + γ̂Gt. We consider the following predictors in matrix G: the total realized variance calculated over

the last month (rvt−1m,t); realized variance calculated using either the last five days (rvt−5d,t) or the

last day of the month (rvt−1d,t); and the option-implied variance (ivt,t+1m). We report, in parentheses,

heteroskedasticity and autocorrelation consistent (HAC) standard deviations with 44 lags. ∗∗∗, ∗∗, and
∗ represent significance at the 1%, 5%, and 10% confidence levels. The adjusted R2s are reported at the

end of the table.

(1) (2) (3) (4) (5)
Constant 0 7.72*** 7.72*** 6.96*** 4.15***

- (1.28) (1.28) (1.10) (1.56)
rvt−1m,t 1 0.64*** 0.64*** 0.27*** 0.12

- (0.08) (0.08) (0.10) (0.09)
rvt−5d,t 0.32** 0.29*

(0.16) (0.17)
rvt−1d,t 0.09*** 0.06**

(0.02) (0.02)
ivt,t+1m 0.21*

(0.12)
Adj. R2 0.270 0.406 0.406 0.466 0.474
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Table A2: Correlations

This table reports correlations among the monthly U.S. downside and upside variance premiums (DVP
and UVP, respectively) across various measures. Models are reported in Table 1. Panel A (Panel B)
reports correlations of DVP (UVP) estimates across measures. The sample runs from April 1991 to
December 2019.

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
A. Correlations across models; DVP B. Correlations across models; UVP
(1) 1 (1) 1
(2) 0.87 1 (2) 0.80 1
(3) 0.87 0.99 1 (3) 0.77 0.94 1.00
(4) 0.77 0.97 0.97 1 (4) 0.77 0.90 0.88 1
(5) 0.74 0.97 0.96 0.99 1 (5) 0.77 0.74 0.75 0.95 1

Table A3: Country-level exposure and predictability patterns, time-varying exposure

This table shows the results for the following regression setting:

κ−1rit,t+κ = aκ + (bDκ + bDEE,κEE
i
t−1 + bDFE,κFE

i
t−1)vpDt,t+1

+ (bUκ + bUEE,κEE
i
t−1 + bUFE,κFE

i
t−1)vpUt,t+1 + εi,t+κ,

where EEi and FEi are our proxies for economic and financial exposure, respectively; they are described
in Table 4. These variables are available at an annual frequency, and they are converted to monthly
frequency using a step function. ∗∗∗, ∗∗, and ∗ represent significance at the 1%, 5%, and 10% confidence
levels.

bDκ bDEE,κ bDFE,κ bUκ bUEE,κ bUFE,κ R2

κ = 1 0.004 0.023 -0.039 2.050*** -0.092 0.158 0.836
(0.153) (0.018) (0.026) (0.488) (0.080) (0.158)

κ = 2 0.197* 0.021* -0.035* 0.876** -0.115** 0.188* 0.570
(0.112) (0.012) (0.018) (0.383) (0.057) (0.099)

κ = 3 0.205** 0.019* -0.023 1.101*** -0.085 0.097 0.995
(0.096) (0.010) (0.015) (0.340) (0.054) (0.091)

κ = 4 0.218*** 0.019** -0.024* 1.363*** -0.088* 0.080 1.677
(0.083) (0.009) (0.013) (0.338) (0.050) (0.089)

κ = 5 0.260*** 0.017** -0.023** 0.977*** -0.067* 0.069 1.659
(0.073) (0.007) (0.010) (0.242) (0.038) (0.060)

κ = 6 0.297*** 0.017*** -0.024*** 0.599*** -0.065** 0.071* 1.789
(0.070) (0.006) (0.009) (0.204) (0.031) (0.043)

κ = 7 0.288*** 0.017*** -0.025*** 0.285 -0.060* 0.087* 1.709
(0.068) (0.006) (0.008) (0.189) (0.032) (0.045)

κ = 8 0.237*** 0.017*** -0.025*** 0.220 -0.058* 0.095** 1.361
(0.070) (0.006) (0.007) (0.186) (0.033) (0.041)

κ = 9 0.217*** 0.016*** -0.025*** -0.049 -0.044 0.083** 1.189
(0.066) (0.006) (0.007) (0.191) (0.035) (0.041)

κ = 10 0.193*** 0.017*** -0.026*** -0.125 -0.042 0.086** 1.079
(0.063) (0.005) (0.006) (0.194) (0.031) (0.038)

κ = 11 0.188*** 0.017*** -0.026*** -0.184 -0.040 0.084** 1.158
(0.057) (0.004) (0.006) (0.190) (0.027) (0.035)

κ = 12 0.181*** 0.017*** -0.026*** -0.179 -0.045* 0.093*** 1.214
(0.052) (0.004) (0.005) (0.172) (0.024) (0.032)
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Table A4: Country-level exposure and predictability patterns, alternative financial expo-
sure proxies

This table shows the results for the following regression setting:

κ−1rit,t+κ = aκ + (bDκ + bDEE,κEE
i + bDFE,κFE

i)vpDt,t+1

+ (bUκ + bUEE,κEE
i + bUFE,κFE

i)vpUt,t+1 + εi,t+κ,

where EEi and FEi are the time-series averages of our proxies for economic and financial
exposure, respectively. We consider three alternative proxyes for financial exposure: the ratio
of international bank claims to GDP (source: BIS, in panel A), the capital market restriction
index in Fernandez et al. (2016) (panel B), and the equity market domestic investment share
(source: IMF, coordinated portfolio investment survey, in panel C). ∗∗∗, ∗∗, and ∗ represent
significance at the 1%, 5%, and 10% confidence levels.

Panel A. International bank claims

bDκ bDEE,κ bDFE,κ bUκ bUEE,κ bUFE,κ R2

κ = 1 -0.039 0.009 -0.001 2.143*** 0.208 -0.135 0.834
(0.150) (0.047) (0.025) (0.446) (0.207) (0.113)

κ = 2 0.148 0.022 -0.008 1.170*** 0.041 -0.060 0.524
(0.110) (0.033) (0.017) (0.372) (0.157) (0.084)

κ = 3 0.170* 0.027 -0.010 1.272*** -0.037 -0.012 0.975
(0.093) (0.027) (0.015) (0.342) (0.143) (0.078)

κ = 4 0.180** 0.027 -0.010 1.501*** -0.056 -0.005 1.637
(0.080) (0.023) (0.013) (0.342) (0.137) (0.076)

κ = 5 0.220*** 0.027 -0.011 1.135*** -0.060 0.004 1.616
(0.070) (0.019) (0.011) (0.250) (0.101) (0.056)

κ = 6 0.255*** 0.029* -0.012 0.771*** -0.089 0.023 1.707
(0.067) (0.016) (0.009) (0.205) (0.070) (0.039)

κ = 7 0.245*** 0.028** -0.012 0.482** -0.091 0.030 1.583
(0.065) (0.014) (0.008) (0.196) (0.061) (0.032)

κ = 8 0.196*** 0.025* -0.010 0.424** -0.072 0.020 1.208
(0.066) (0.014) (0.007) (0.199) (0.057) (0.029)

κ = 9 0.179*** 0.023* -0.010 0.134 -0.068 0.025 1.019
(0.063) (0.013) (0.007) (0.210) (0.058) (0.029)

κ = 10 0.156*** 0.021* -0.009 0.063 -0.060 0.021 0.873
(0.060) (0.012) (0.006) (0.208) (0.056) (0.029)

κ = 11 0.149*** 0.021* -0.008 0.003 -0.063 0.024 0.920
(0.055) (0.011) (0.006) (0.203) (0.054) (0.028)

κ = 12 0.144*** 0.020** -0.008 0.015 -0.055 0.018 0.949
(0.051) (0.010) (0.006) (0.187) (0.049) (0.026)
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Table A4: Country-level exposure and predictability patterns, alternative financial expo-
sure proxies, continued

Panel B. Capital restrictions

bDκ bDEE,κ bDFE,κ bUκ bUEE,κ bUFE,κ R2

κ = 1 -0.068 0.008 0.033 1.846*** -0.015 0.436 0.794
(0.163) (0.016) (0.104) (0.536) (0.068) (0.427)

κ = 2 0.114 0.010 0.051 1.051** -0.056 0.125 0.488
(0.119) (0.011) (0.069) (0.432) (0.054) (0.314)

κ = 3 0.152 0.010 0.035 1.009*** -0.052 0.301 0.967
(0.098) (0.009) (0.054) (0.366) (0.043) (0.274)

κ = 4 0.156* 0.009 0.047 1.303*** -0.058 0.214 1.637
(0.084) (0.007) (0.046) (0.368) (0.036) (0.263)

κ = 5 0.188** 0.008 0.061 1.069*** -0.050* 0.023 1.617
(0.073) (0.005) (0.038) (0.271) (0.028) (0.175)

κ = 6 0.225*** 0.008 0.059* 0.696*** -0.046** 0.015 1.727
(0.069) (0.005) (0.033) (0.224) (0.023) (0.133)

κ = 7 0.218*** 0.008 0.055* 0.395* -0.037 0.038 1.616
(0.067) (0.005) (0.031) (0.209) (0.023) (0.119)

κ = 8 0.168** 0.007 0.054* 0.381* -0.034 -0.012 1.242
(0.069) (0.005) (0.030) (0.212) (0.025) (0.116)

κ = 9 0.151** 0.007 0.052* 0.073 -0.023 0.011 1.065
(0.066) (0.005) (0.027) (0.225) (0.026) (0.117)

κ = 10 0.125* 0.006 0.054** 0.008 -0.021 0.006 0.933
(0.064) (0.004) (0.026) (0.234) (0.024) (0.120)

κ = 11 0.119** 0.007* 0.055** -0.036 -0.019 -0.021 0.994
(0.059) (0.004) (0.023) (0.232) (0.021) (0.115)

κ = 12 0.114** 0.007** 0.053*** -0.031 -0.021 -0.003 1.023
(0.054) (0.003) (0.020) (0.212) (0.018) (0.099)

Appendix Page 4



Table A4: Country-level exposure and predictability patterns, alternative financial expo-
sure proxies, continued

Panel C. Domestic investment share

bDκ bDEE,κ bDFE,κ bUκ bUEE,κ bUFE,κ R2

κ = 1 -0.029 0.008 -0.019 2.913** -0.013 -1.000 0.788
(0.263) (0.016) (0.257) (1.225) (0.067) (1.439)

κ = 2 0.210 0.009 -0.078 1.397 -0.055 -0.340 0.481
(0.183) (0.011) (0.174) (0.924) (0.052) (1.036)

κ = 3 0.238* 0.010 -0.081 1.378** -0.055 -0.188 0.947
(0.143) (0.009) (0.134) (0.658) (0.044) (0.777)

κ = 4 0.257** 0.009 -0.087 1.714*** -0.059 -0.336 1.620
(0.125) (0.007) (0.115) (0.619) (0.036) (0.734)

κ = 5 0.305*** 0.008 -0.096 1.212*** -0.049* -0.170 1.599
(0.107) (0.006) (0.093) (0.429) (0.028) (0.504)

κ = 6 0.348*** 0.008 -0.106 0.700* -0.046** 0.010 1.709
(0.101) (0.005) (0.079) (0.379) (0.023) (0.395)

κ = 7 0.350*** 0.008 -0.123* 0.290 -0.039 0.181 1.606
(0.097) (0.005) (0.071) (0.372) (0.024) (0.384)

κ = 8 0.290*** 0.007 -0.109 0.372 -0.034 -0.001 1.231
(0.097) (0.005) (0.067) (0.354) (0.025) (0.354)

κ = 9 0.279*** 0.007 -0.119** -0.021 -0.024 0.139 1.058
(0.091) (0.005) (0.060) (0.349) (0.027) (0.323)

κ = 10 0.251*** 0.007* -0.114** -0.091 -0.022 0.141 0.918
(0.086) (0.004) (0.056) (0.355) (0.025) (0.305)

κ = 11 0.240*** 0.007* -0.108** -0.151 -0.020 0.136 0.973
(0.078) (0.004) (0.052) (0.354) (0.022) (0.305)

κ = 12 0.230*** 0.007** -0.104** -0.142 -0.022 0.149 1.001
(0.072) (0.003) (0.050) (0.332) (0.019) (0.309)
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Figure A1: Alternative measures of the VP and its components

The dashed lines denote the Martingale measure, or measure (1) in Tables 1 and 2. The solid lines
denote the benchmark VP measures used in the main empirical results (Table 1 and Figure 1). The
shaded regions indicate NBER recessions.
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Figure A2: The international stock return predictability of DVP and UVP

This figure shows the predictive coefficient estimates for the downside (DVP, top) and up-
side (UVP, bottom) variance premiums at horizons between one and 12 months for the main
predictability regression setting:

κ−1ri,t,t+κ = ai,κ + aκ + bDκ vp
D
t,t+1 + bUκ vp

U
t,t+1 + εi,t,t+κ,

where ri,t,t+κ denotes the cumulative κ-month-ahead log excess returns for country i. The
dashed lines depict 90% confidence intervals given Newey-West standard errors.
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Figure A3: DVP coefficients, country-level regression

This figure shows the predictive coefficient estimates of the downside variance premium (the
solid lines) and its 90% confidence interval given Newey-West standard errors (the dashed lines)
at the country level. The regression setting is the following:

κ−1ri,t,t+κ = ai,κ + bDi,κvp
D
t,t+1 + bUi,κvp

U
t,t+1 + εi,t,t+κ,

where ri,t,t+κ denotes the cumulative κ-month-ahead log excess returns for country i.
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Figure A4: UVP coefficients, country-level regression

This figure shows the predictive coefficient estimates of the upside variance premium (the solid
lines) and its 90% confidence interval given Newey-West standard errors (the dashed lines) at
the country level. The regression setting is the following:

κ−1ri,t,t+κ = ai,κ + bDi,κvp
D
t,t+1 + bUi,κvp

U
t,t+1 + εi,t,t+κ,

where ri,t,t+κ denotes the cumulative κ-month-ahead log excess returns for country i.
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Figure A5: The international stock return predictability of U.S. and global DVP and
UVP

This figure shows the predictive coefficient estimates of the downside (DVP, top) and upside
(UVP, bottom) variance premiums at horizons between one and 12 months for the main pre-
dictability regression setting:

κ−1ri,t,t+κ = aκ + bDκ vp
D
t,t+1 + bUκ vp

U
t,t+1 + εi,t,t+κ,

where ri,t,t+κ denotes the cumulative κ-month-ahead log excess returns for country i. The
dashed lines depict 90% confidence intervals given Newey-West standard errors (SEs). The
left panels show the coefficients when vpD and vpD are the variance premium components for
the United States, while for the right panels, the variance premium components are the equal-
weighted average for the United States, Germany, France, and Switzerland. The sample runs
from April 2003 to December 2019. Appendix Page 10



B. A no-arbitrage international framework

This appendix complements Section 3.1 and solves a simple no-arbitrage international framework
to motivate our empirical model. This framework, without loss of generality, consists of a characteriza-
tion of the state evolution and a pricing kernel for a U.S./global representative agent. The U.S. state
evolution process is characterized by kernel state variables, their second-moment state variables, and a
cash flow state variable (dividend growth). The dynamic state process, Yt, follows a VAR nature, and
the shocks, ωt, are mutually independent centered gamma shocks that introduce heteroskedasticity and
non-Gaussianity in an affine state variable system, as follows:

Yt+1 = µ+AYt + Σωt+1, (B1)

ωt+1 ∼ Γ(ΩYt + e, 1) − (ΩYt + e),

where µ, A, Σ, Ω, and e are constant matrices; Γ represents a gamma distribution; ΩYt + e denotes
a vector of shape parameters that spans second (and higher-order) moments of these shocks; and the
constant matrix Ω describes the relative loadings. The first moment of a gamma distribution Γ(x, 1) is
x, and, therefore, Γ(ΩYt + e, 1) − (ΩYt + e) guarantees that the shocks ωt+1 follow centered gamma
distributions. The loading matrix Ω can contain positive, zero, and negative coefficients; this means
that a univariate process, such as real growth, can load on multiple shocks on the economy in order to
realistically capture their left- and right-tail behaviors. The empirical assumption of asymmetric non-
Gaussian shocks allows the framework to be relatively flexible in the estimation while still keeping the
model tractable, given their exponential moment-generating functions.

Next, we assume a general linear process of the log U.S. real pricing kernel, as follows:

mt+1 = m0 +m1Yt +m2Σωt+1, (B2)

where m1 and m2 denote the loadings on the lagged state variables and the shocks, respectively.
The U.S./global investor prices individual country dividend growth processes, which load on both

global and idiosyncratic kernel and cash flow shocks with heterogeneous degrees of global exposure. To be
specific, we assume that dividend growth processes for the United States and country i are, respectively,
the following:

∆dt+1 = d0 + d1Yt + d2Σωt+1, (B3)

∆dit+1 = di0 + di1Yt + di2Σωt+1 + µit + uid,t+1, (B4)

where di1 (di2) indicates the loadings of country i’s dividend growth on the U.S. lagged state variable
levels (state variable shocks) and µit and uid,t+1 indicate, respectively, the additional country-specific

dividend growth mean and shock processes that are orthogonal to the U.S. shocks. Both di1 and di2 can
be motivated to reflect global exposure that can potentially be of an economic or financial nature.

B.1. Solution: U.S. price-dividend ratio and log returns

Given the no-arbitrage condition, the U.S. price-dividend ratio can be rewritten as,

PDt = Et

[
Mt+1

(
Pt+1 +Dt+1

Dt

)]
=

∞∑
n=1

Et

exp

 n∑
j=1

mt+j + ∆dt+j

 , (B5)

where mt+j indicates the future log U.S. pricing kernel at month j and ∆dt+j the j-th month log dividend

growth rate. Let Fnt denote the n-th term in the summation, Fnt = Et

[
exp

(∑n
j=1mt+j + ∆dt+j

)]
, and

hence Fnt Dt is the price of zero-coupon equity that matures in n periods. The PDt can be rewritten as∑∞
n=1 F

n
t .

We first prove that, ∀n ≥ 1, Fnt is an exactly exponential affine function of the state variables using
induction. When n = 1, F 1

t = Et [exp (mt+1 + ∆dt+1)] = Et {exp [(m0 + d0) + (m1 + d1)Yt + (m2 + d2)Σωt+1]} =
exp

(
e10 + e11Yt

)
, where e10 and e11 are implicitly defined. Suppose that the (n − 1)-th term Fn−1t =
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exp
(
en−10 + en−1

1 Yt

)
, then

Fnt = Et

exp

 n∑
j=1

mt+j + ∆dt+j



= Et


exp(mt+1 + ∆dt+1)Et+1

exp

n−1∑
j=1

mt+j+1 + ∆dt+j+1


︸ ︷︷ ︸

Fn−1
t+1


= Et

[
exp(mt+1 + ∆dt+1) exp

(
en−10 + en−1

1 Yt+1

)]
= exp

(
en0 + en1Yt

)
, (B6)

where en0 and en1 are implicitly defined. Hence, the price-dividend ratio can be solved as PDt =∑∞
n=1 F

n
t =

∑∞
n=1 exp

(
en0 + en1Yt

)
. The log return can be solved with linear approximation as

rt+1 = ln

(
Pt+1 +Dt+1

Pt

)
= ∆dt+1 + ln

[
1 +

∑∞
n=1 exp

(
en0 + en1Yt+1

)∑∞
n=1 exp

(
en0 + en1Yt

) ]

≈ ∆dt+1 + const. +

∑∞
n=1 exp

(
en0 + en1 Ȳ

)
en1

1 +
∑∞
n=1 exp

(
en0 + en1 Ȳ

)Yt+1 −
en1∑∞

n=1 exp
(
en0 + en1 Ȳ

)Yt

= ξ0 + ξ1Yt + ξ2Σωt+1. (B7)

This produces a linear return process.

B.2. Solution: International price-dividend ratio and log returns

The model takes the perspective of a U.S. investor. She prices country i’s cash flow processes in
dollars at the equilibrium. Given the common pricing kernel mt+1, the price-dividend ratio of country

i is modeled as PDi
t = Et

[
Mt+1

(
P i

t+1+D
i
t+1

Di
t

)]
=
∑∞
n=1Et

[
exp

(∑n
j=1mt+j + ∆dit+j

)]
. Using similar

induction procedures, it can be shown that

PDi
t =

∞∑
n=1

Fnt =

∞∑
n=1

exp

ei,n0 + ei,n1 Yt + ei,n2 Y i
t︸ ︷︷ ︸

Idiosyncratic Part

 , (B8)

where Y it denotes a vector of country-specific state variables. The country i log market return can be
solved and approximated as,

rit+1 = ln

(
P it+1 +Di

t+1

P it

)
= ∆dit+1 + ln

1 +
∑∞
n=1 exp

(
ei,n0 + ei,n1 Yt+1 + ei,n2 Y i

t+1

)
∑∞
n=1 exp

(
ei,n0 + ei,n1 Yt + ei,n2 Y i

t

)


≈ ∆dit+1 + const. +

∑∞
n=1 exp

(
ei,n0 + ei,n1 Ȳ + ei,n2 Ȳ i

)
ei,n1

1 +
∑∞
n=1 exp

(
ei,n0 + ei,n1 Ȳ + ei,n2 Ȳ i

) Yt+1 −
ei,n1∑∞

n=1 exp
(
ei,n0 + ei,n1 Ȳ + ei,n2 Ȳ i

)Yt

︸ ︷︷ ︸
Global exposure

+

∑∞
n=1 exp

(
ei,n0 + ei,n1 Ȳ + ei,n2 Ȳ i

)
ei,n2

1 +
∑∞
n=1 exp

(
ei,n0 + ei,n1 Ȳ + ei,n2 Ȳ i

) Y i
t+1 −

ei,n2∑∞
n=1 exp

(
ei,n0 + ei,n1 Ȳ + ei,n2 Ȳ i

)Y i
t︸ ︷︷ ︸

Idiosyncratic

= ξi0 + ξi1Yt + ξi2Σωt+1 + Idiosyncratic Parts. (B9)
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In this framework, international stock returns are differentiated through cash flow capitalizations,
where country cash flow growths are assumed with different levels of exposure to various global shocks.
Intuitively, ξi2 is crucial in determining country i’s risk premiums. Two sources of cross-country het-
erogeneity in ξi2 can be shown in a closed-form model solution, one through the pure cash flow growth
∆dit+1 and another through the changes in country i’s log price-dividend ratio. First, we explicitly as-
sume that country i’s cash flow growth loads on global shocks through di2. Second, when global economic
uncertainty increases, country i’s future dividend growth (i.e., modeled as di1) is expected to decrease,
driving down the current stock price. A bad global economic or risk aversion shock could also induce
different intertemporal substitution or precautionary savings effects for different countries due to varying
exposure of dividend growth to global shocks (i.e., modeled as di2), changing the interest rates and hence
the total return demanded in an individual country. Therefore, both di1 and di2 can enter country i’s
price-dividend ratio, and both can motivate heterogeneity of ξi2 in rit+1.

B.3. Solution: Variance risk premium

We derive U.S. one-period conditional stock return variances under the physical and risk-neutral
expectations. First, the U.S. one-period physical conditional return variance can be easily obtained,
given that ωt+1 ∼ Γ(ΩYt + e, 1) − (ΩYt + e), as

V ARt(rt+1) = (ξ2Σ)
◦2

(ΩYt + e) , (B10)

where “◦” indicates element-by-element matrix multiplication.
Second, the U.S. one-period risk-neutral conditional return variance can be obtained using the

moment generating function (MGF) of gamma-distributed shocks. We start from the MGF under the
risk-neutral measure

mgfQt (rt+1; ν) =
Et [exp (mt+1 + νrt+1)]

Et [exp (mt+1)]

= exp {Et(mt+1) + νEt(rt+1) + [−(m2 + νξ2)Σ− ln (1− (m2 + νξ2)Σ)] (ΩYt + e)}
/ exp {Et(mt+1) + [−m2Σ− ln (1−m2Σ)] (ΩYt + e)}
= exp {νEt(rt+1) + [−νξ2Σ + [− ln (1− (m2 + νξ2) Σ) + ln (1−m2Σ)]] (ΩYt + e)} .

The first-order moment is the first-order derivative at ν = 0,

∂mgfQt (rt+1; ν)

∂ν
= mgfQt (rt+1; ν) ∗

{
Et(rt+1) +

[
(m2 + νξ2)Σ ◦ ξ2Σ ◦ (1− (m2 + νξ2)Σ)

◦−1
]

(ΩYt + e)
}

EQt (rt+1) =
∂mgfQt (rt+1; ν)

∂ν
|ν=0

= Et(rt+1) +
[
m2Σ ◦ ξ2Σ ◦ (1−m2Σ)

◦−1
]

(ΩYt + e) .

The second-order moment can be derived as follows:

∂2mgfQt (rt+1; ν)

∂ν2
= mgfQt (rt+1; ν) ∗

{
Et(rt+1) +

[
(m2 + νξ2)Σ ◦ ξ2Σ ◦ (1− (m2 + νξ2)Σ)

◦−1
]

(ΩYt + e)
}2

+mgfQt (rt+1; ν) ∗
{[

(m2 + νξ2)Σ ◦ (ξ2Σ)◦2 − (1− (m2 + νξ2)Σ) ◦ (ξ2Σ)◦2
]
◦ (1− (m2 + νξ2)Σ)

◦−2
}

EQt (r2t+1) =
∂2mgfQt (rt+1; ν)

∂ν2
|ν=0

=
(
EQt (rt+1)

)2
+
[
(ξ2Σ)◦2 ◦ (1−m2Σ)

◦−2
]

(ΩYt + e) .

As a result, the one-period risk-neutral conditional variance is

V ARQt (r̃it+1) = EQt
(
(r̃it+1)2

)
−
(
EQt (r̃it+1)

)2
=
[
(ξ2Σ)◦2 ◦ (1−m2Σ)

◦−2
]

(ΩYt + e) .
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The U.S. variance risk premium, V ARQt (r̃it+1)− V ARt(r̃it+1), is hence given by:

V ARQt (r̃it+1)− V ARt(r̃it+1) =
{

(ξ2Σ)◦2 ◦
[
(1−m2Σ)

◦−2 − 1
]}

(ΩYt + e) , (B11)

where “◦” denotes element-by-element matrix multiplication.
This provides some economic insights. First, the dynamics of VP (and its downside and upside

components) should be driven by the shape parameters of kernel state variable shocks, here specified
as ΩYt + e. This is because, for these shocks, the pricing kernel has non-zero loadings (that is, m2 6=
0). Second, for shocks with positive m2 loadings, their shape parameters (as captured in (ΩYt + e))

contribute positively to VP, given

[(
1

1−m2σ

)2
− 1

]
> 0. Intuitively, for instance, in a standard habit

formation model, the marginal utility loads positively on relative risk aversion, and, hence, VP in such
a framework would increase with the expected variability in risk aversion; in the long-run risk model
of Segal, Shaliastovich, and Yaron (2015), the kernel has a positive exposure to a bad macroeconomic
shock, and, hence, VP could also increase with bad macroeconomic uncertainty.

Note that it is not trivial to derive model-implied VP components that are consistent with the
downside and upside definitions as in our empirical section (negative and positive return realizations,
respectively, in Section 2) because returns are endogenously determined, as shown in Equation (B7).
Therefore, given the empirical focus of the paper, we choose to determine and separate the drivers of
downside and upside VPs entirely empirically and let the data speak, as discussed in Section 3.1. Such
an empirical approach is motivated from what we learn in this appendix section: that VP should be
spanned by second moments of kernel shocks and so should its components.

B.4. Solution: Equity risk premiums

The risk-free rate is derived as

rft = − ln {Et [exp(mt+1)]}
= − ln {Et(mt+1) + [−m2Σ− ln (1−m2Σ)] (ΩYt + e)} . (B12)

We then impose the no-arbitrage condition, 1 = Et[exp(mt+1 + rt+1)] and obtain the expected excess
returns. By expanding the law of one price equation, we obtain

1 = Et[exp(mt+1 + rt+1)]

= exp {Et(mt+1) + Et(rt+1) + [− (m2 + ξ2) Σ− ln (1− (m2 + ξ2) Σ)] (ΩYt + e)} ,

where m2, ξ2, Σ, and e are constant matrices defined above. Given the risk free rate derived above, the
U.S. equity risk premium is given by:

Et(rt+1)− rf t = {ξ2Σ + ln [1− (m2 + ξ2)Σ]− ln(1−m2Σ)} (ΩYt + e), (B13)

which is determined by second moments of shocks that commonly drive the pricing kernel and asset
returns. Similarly, these U.S. second moments also determine the global compensation part of country
i’s one-month-ahead equity risk premium (EP i1,t) in our framework, as follows:

Et(r
i
t+1)− rf t =

{
ξi2Σ + ln

[
1− (m2 + ξi2)Σ

]
− ln(1−m2Σ)

}
(ΩYt + e)︸ ︷︷ ︸

The Global Compensation Part

+ Idiosyncratic Parts. (B14)

The Gaussian approximation of the US return equation above is − (m2Σ ◦ ξ2Σ) (ΩYt + e), or
−Covt(rt+1,mt+1); similarly, for other countries, the global part captures −Covt(rit+1,mt+1). The
total country equity risk premiums can also be driven by a pure local risk compensation component,
which, however, is not the focus of the paper and in theory should be unpredictable by common/U.S.
predictors, and, hence, is abbreviated above without loss of generality.

In summary, this framework suggests two important implications for our research objective. First,
both the dynamics of VP and the global part of international EPs should be driven by the second moments
of kernel shocks. Second, this commonality implies various stock return predictability channels, which
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together relate to the observed international predictive coefficients.

C. Additional empirical evidence for Sections 3.2 and 5

C.1. Dynamic processes

We present precise processes to estimate the equation system (12). The economic growth state
variable is assumed to follow a reduced-form dynamic process that captures time-varying expected growth
and asymmetric/skewed and heteroskedastic shocks to be potentially consistent with recent work (see,
e.g., Adrian, Boyarchenko, and Giannone (2019)):

θt+1 = θ + ρθ,θ(θt − θ) + ρθ,θp(θpt − θp) + ρθ,θn(θnt − θn) + δθ,θpωθp,t+1 − δθ,θnωθn,t+1, (C15)

where the conditional mean is subject to an AR(1) term capturing persistence as well as changes in
expected good and bad economic uncertainties capturing the GARCH-in-mean intuition. As in Bekaert,
Engstrom, and Xu (2022), the disturbance of the log economic growth is decomposed into two indepen-
dent centered gamma shocks, as follows:

ωθp,t+1 = Γ(θpt, 1)− θpt,
ωθn,t+1 = Γ(θnt, 1)− θnt,

where ωθp,t+1 (ωθn,t+1) governs the right-tail (left-tail) dynamics of the growth distribution with shape
parameter θpt (θnt) determining the conditional higher moments of the growth disturbance shock. For
example, given the moment generating function (MGF) of independent gamma shocks, the conditional
variance of θt+1 is δ2θ,θpθpt + δ2θ,θnθnt and the conditional unscaled skewness is 2δ3θ,θpθpt − 2δ3θ,θnθnt. In-
creases in θpt (θnt) imply higher (lower) conditional skewness while increasing conditional variance, and,
hence, θpt (θnt), can be interpreted as the “good” (“bad”) uncertainty state variable. This disturbance
structure is one of the non-Gaussian shock assumptions that the literature has explored to realistically
model macro or financial state variable processes (see, e.g., Eraker and Shaliastovich (2008); Fulop, Li,
and Yu (2015); Segal, Shaliastovich, and Yaron (2015); De Groot (2015); Bekaert and Engstrom (2017);
and Xu (2021)). The dynamics of the good and bad economic uncertainty state variables follow AR(1)
processes:

θpt+1 = θp+ ρθp(θpt − θp) + σθpωθp,t+1, (C16)

θnt+1 = θn+ ρθn(θnt − θn) + σθnωθn,t+1. (C17)

We define a macroeconomic state variable vector, Ymac,t ≡
[
θt θpt θnt

]′
, and its unconditional mean

Ymac ≡
[
θ θp θn

]′
. The risk aversion state variable, qt, evolves over time with a state-dependent

conditional mean and a disturbance that is exposed to fundamental economic shocks. The residual is
then separated into two independent gamma shocks, ωqh,t+1 and ωql,t+1, potentially capturing distinct
behaviors of the right-tail (high risk aversion) and left-tail (low risk aversion) preference shocks:

qt+1 = q + ρq,q(qt − q) + ρq,qh(qht − qh) + ρq,mac

(
Ymac,t − Ymac

)
+ δq,θpωθp,t+1 + δq,θnωθn,t+1 + δq,qhωqh,t+1 − δq,qlωql,t+1,

ωqh,t+1 = Γ(qht, 1)− qht,
ωql,t+1 = Γ(ql, 1)− ql,
qht+1 = qh+ ρqh(qht − qh) + σqhωqh,t+1. (C18)

The conditional mean of risk aversion evolves with the macro variables (both level and volatility), an
AR(1) term, and a high risk aversion state variable qht that captures the fluctuation of the right-tail risk
aversion shock. Given that risk aversion heteroskedasticity is likely driven by its right-tail movements
when risk aversion is high, we shut down heteroskedasticity coming from the left-tail movements when
risk aversion is low to keep the model relatively simple. Note that our risk aversion dynamics are different
from those in the literature. First, Bekaert, Engstrom, and Xu (2022) also assume a pure risk aversion
shock that is orthogonal to consumption (fundamental) shocks; they assume its shape parameter is the
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same as risk aversion, whereas we elicit a new state variable qht that does not equal qt (but should
very likely positively correlate with qt empirically, as we do find later). Second, the most acknowledged
time-varying risk aversion model is Campbell and Cochrane (1999), which assumes that risk aversion is

purely driven by changes in real fundamentals. Finally, we set Yq,t =
[
qt qht

]′
, and Yq =

[
q qh

]′
.

C.2. Estimation results

The estimation of the three state variable system is conducted sequentially given the overlaying
shocks. First, the economic growth and uncertainty state variables are estimated using a monthly
sample from 1947/02 to 2019/12 and the Approximate Maximum Likelihood (AML) methodology in
Bates (2006). Then, the risk aversion measure uses the qt series from Bekaert, Engstrom, and Xu (2022),
covering from 1986/06 to 2019/12, and is first projected on known macro variables; the disturbance is
estimated following Bates (2006). Below are the estimation results (∗∗∗ (∗∗, ∗): 1% (5%, 10%) test):

A. Estimation Results of θt, θpt, θnt
θt: θ ρθ,θ ρθ,θp ρθ,θn δθ,θp δθ,θn
Coeff. 0.0023*** 0.3799*** 4.02E-05 -0.0001 0.0001*** 0.0028***
SE (0.0003) (0.0313) (0.0002) (0.0012) (2.81E-5) (0.0003)

θpt: θp ρθp δθp
Coeff. 500 (fix) 0.9979*** 0.3739***
SE (0.0171) (0.0173)

θnt : θn ρθn δθp
Coeff. 10.3362*** 0.9525*** 2.2996***
SE (2.0747) (0.0096) (0.1907)

B. Estimation Results of qt, qht
qt: q ρq,q ρq,qh ρq,θ ρq,θp ρq,θn
Coeff. 0.3266*** 0.7124*** -0.0006 -3.1851*** 0.0008** 0.0011
SE (0.0102) (0.0355) (0.0004) (0.9238) (0.0003) (0.0009)

δq,θp δq,θn δq,qh δq,ql ql
Coeff. 0.0004 0.0185*** 1.0767*** 0.0906*** 786.6892***
SE (0.0003) (0.0034) (0.0645) (0.0001) (102.74)

qht: qh ρqh δqh
Coeff. 0.872*** 0.5677*** 1.0767***
SE (0.0670) (0.0307) (0.0645)

We next compare the closeness between average conditional moments (mean, variance) and em-
pirical unconditional moments of θt+1 and qt+1. Moment matching is expected because of the highly
specified model assumptions; given that our paper is not about selecting the most efficient dynamic pro-
cess but obtaining realistic estimates of state variables, we do not expand the model comparison exercise
and follow existing evidence and frameworks in the literature.

θt+1 qt+1

Data Model Data Model
Mean 0.0023*** 0.0025 0.3023*** 0.3049

(0.0003) (0.0084)
Variance 7.33E-05*** 6.11E-05 0.0091*** 0.0094

(7.73E-06) (0.0018)

The figures below depict the dynamics of state variables in the macro and risk aversion, respec-
tively:

(1) From top to bottom: Economic growth (gray) and its conditional mean (red); good macro
uncertainty state variable θpt; bad macro uncertainty state variable θnt; total conditional volatility.
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(2) From top to bottom: Risk aversion state variable qt from Bekaert, Engstrom, and Xu (2022) (gray)
and its conditional mean (red); high risk aversion state variable qht; total conditional volatility.
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C.3. Variance decomposition of international equity risk premi-
ums: A cross-country view

This figure complements Figure 4-(B) with a cross-country view and Figure 6 with a variance
decomposition perspective. This plot shows the variance decomposition (in %) of the model-implied
international equity risk premiums at various horizons coming from different sources of state variables;
by construction, at each horizon, the sum of the three numbers adds to 100%. The results are calibrated
using low/high economic and financial exposure, with low (high) being below the 33th (above the 67th)
percentile value of the 22 countries; see construction and data details in Table 4.
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